• Title/Summary/Keyword: Liposomes

Search Result 339, Processing Time 0.019 seconds

Effect of Lipid Peroxidation on the Fluidity of Erythrocyte Ghost and Phospholipid Liposomal Membranes

  • Han, Suk-Kyu;Kim, Min;Park, Yeong-Hun;Park, Eun-Ju;Lee, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.309-316
    • /
    • 1992
  • The effects of lipid peroxidation on the fluidity of the lipid bilayers of the human erythrocyte ghosts and egg-lecithin phospholipid liposomes have been studied. For the measurements of the peroxidation extent and the fluidity of the membranes, the thiobarbituric acid-reactive substances and the fluorescence depolarization of 1, 6-diphynyl-1, 3, 5-hexatriene labelled into the membrane were employed, respectively. The lipid peroxidation was performed in hypoxanthine/xanthine oxidase/ferrous ion, and hydrogen peroxide/ferrous ion systems. The results of these experiments show that both of the xanthine oxidase and hydrogen peroxide systems effectively. The lipid peroxidation decreased the fluidity of the membranes, especially at the very early stage of the peroxidation reaction. The decrease in the fluidity of membrane by the lipid peroxidation has been ascribed to the alteration of the polyunsaturated acyl chains of lipids and cross linkages among the membrane components. However, under drastic condition of lipid peroxidation, tdhe fluidity of the membrane rather increased possibly due to the deterioration of the membrane integrity by the peroxidation. Morphological change of the erythrocyte on peroxidation has also been observed.

  • PDF

Recent Advances and Future Strategy in Gene Delivery System (유전자 수송계의 현재까지의 연구동향 및 앞으로의 개발전략)

  • Choi, Woo-Jeong;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • Gene therapy is a method for the treatment of diseases with introducing the gene-engineered materials into a patient with gene-deficiency disease (e.g. cystic fibrosis) or cancer to produce a therapeutic protein in a patient's cells. Successful gene therapy requires establishing both gene expression systems and delivery systems. Viral and non-viral vectors have been used for gene delivery. Viral vectors have a high transfection efficiency, but are limited in relations to issues of safety, toxicity and immunogenecity. Non-viral vectors are easy to prepare and relatively safe. However, non-viral vectors have a low transfection efficiency. Cationic liposomes are the most available among non-viral vectors. Cationic liposomes have been used to transfect cells both in vitro and in vivo experiments. Besides, several formulations containing cationic lipid are being used in clinical trials in cases of cystic fibrosis or cancer. A crucial subject to the further development of gene delivery vectors will be a long-term gene expression with following characteristics; protecting and deliverying DNA efficiently, non-toxic and non-immunogenic, and easy to produce in large scale.

  • PDF

In Vitro Cytotoxic Effect of N-(Phosphonacetyl)-L-Aspartic Acid in Liposome Against C-26 Murine Colon Carcinoma

  • Kim, Jin-Seok;Timothy D.Heath
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.167-171
    • /
    • 2000
  • We have investigated the in vitro cytotoxic effect of liposome-encapsulated N-(phospho-nacetyl)-L-aspartic acid (PALA) against C-26 murine colon cancer cells, and have compared it in this regard to free PALA. Three different PALA-containing liposomal formulations using distearoylphosphatidylcholine (DSPC), distearoylphosphatidylglycerol (DSPG), and polyethyle-neglycol-derivatized distearoylphosphatidylethanolamine (PEG-DSPE) were made and their cytotoxicity was measured. In 72 hr continuous exposure experiment with C-26 cells, the 50% growth inhibitory concentration ($IC_50$) of DSPG-PALA liposome formulation was $0.09\mu\$, which showed about 65-fold more potent than unencapsulated free PALA ($5.1\mu\$). Similar degree of increase in cytotoxicity was also observed in 1 hr exposure experiment. However the $IC_50$ of PEG-DSPE-PALA liposome and DSPC-PALA liposome were $10.7\mu\$and $11.8\mu\$respectively, which showed slightly less potent than unencapsulated free PALA. Physical characteristics of PALA-liposomes, such as the size and drug:lipid ratio were also determined. In conclusion, negatively-charged DSPG-PALA liposome showed the highest cytotoxic effect among tested on the C-26 cells in vitro.

  • PDF

Antioxidant Activity of NADH and Its Analogue - An In Vitro Study

  • Olek, Robert Antoni;Ziolkowski, Wieslaw;Kaczor, Jan Jacek;Greci, Lucedio;Popinigis, Jerzy;Antosiewicz, Jedrzej
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.416-421
    • /
    • 2004
  • The antioxidant activities of NADH and of its analogue, 1,4-dihydro-2,6-dimethyl-3,5-dicarbethoxy-pyridine ($PyH_2$), were evaluated in vitro. NADH was found to be oxidized by the peroxyl radical derived from 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH) decomposition, in a pH-dependent manner. Both NADH and $PyH_2$ inhibited the peroxidation of egg yolk lecithin (EYL) liposomes, although $PyH_2$ was more effective than NADH when 2,2'-azobis-4-methoxy-2,4-dimethyl-valeronitrile (methoxy-AMVN) was employed to induce EYL liposome peroxidation. The antioxidant activities of NADH and $PyH_2$ were also evaluated by measuring their influences on 1,3-diphenylisobenzofuran (DPBF) fluorescence decay in the presence of peroxyl radicals. NADH and $PyH_2$ were much more effective at inhibiting DPBF quenching in Triton X-100 micelles than in liposomes. These results indicate that NADH can inhibit lipid peroxidation despite being hydrophilic. Nevertheless, membrane penetration is an important factor and limits its antioxidant activity.

Protection of Skin Fibroblasts from Infrared-A-Induced Photo-Damage Using Ginsenoside Rg3(S)-Incorporated Soybean Lecithin Liposomes

  • Won Ho Jung;Jihyeon Song;Gayeon You;Jun Hyuk Lee;Sin Won Lee;Joong-Hoon Ahn;Hyejung Mok
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.135-141
    • /
    • 2023
  • Protection of skin cells from chronic infrared-A (IRA) irradiation is crucial for anti-photoaging of the skin. In this study, we investigated the protective activity of Rg3(S) and Rg3(S)-incorporated anionic soybean lecithin liposomes (Rg3/Lipo) with a size of approximately 150 nm against IRA-induced photodamage in human fibroblasts. The formulated Rg3/Lipo showed increased solubility in aqueous solution up to a concentration of 200 ㎍/ml, compared to free Rg3(S). In addition, Rg3/Lipo exhibited superior colloidal stability in aqueous solutions and biocompatibility for normal human dermal fibroblasts (NHDFs). After repeated IRA irradiation on NHDFs, elevated levels of cellular and mitochondrial reactive oxygen species (ROS) were greatly reduced by Rg3(S) and Rg3/Lipo. In addition, cells treated with Rg3/Lipo exhibited noticeably reduced apoptotic signals following IRA irradiation compared to untreated cells. Thus, considering aqueous solubility and cellular responses, Rg3/Lipo could serve as a promising infrared protector for healthy aging of skin cells.

Studies on Anti-Wrinkle and Whitening Effects of Liposomes Containing Acerola Extract Mixture (아세로라 추출물 혼합 리포좀의 주름, 미백 효과에 대한 연구)

  • Kim, Su Jin;Oh, Won Jun;Kwon, Sung Pil;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.341-352
    • /
    • 2021
  • Acerola is an excellent ingredient because of its high natural vitamin C content, but it is difficult to stabilize and has hardly been studied as a cosmetic material. Therefore, this study developed a mixed liposome preparation for stabilizing acerola extract. As a safety test, the skin irritation test was evaluated by BCOP assay and HET-CAM assay. We evaluated the inhibition of tyrosinase activity, the whitening effect of melanin production, and the wrinkle effect of prochloragentype-I C-peptide production, and confirmed the possibility of functional cosmetics. In addition, a cream of liposomes containing acerola extract mixture was developed to evaluate the clinical studies of skin wrinkles and whitening. BCOP assay, HET-CAM assay and human skin primary irritation test results of liposomes containing acerola extract mixture showed no irritation and were safe from skin and eye. The result of tyrosinase activity by 75.8% at 1,000 ㎍/mL. As a result of the melanogenesis inhibition test, liposome with acerola extract showed the melanin content by 46.2% at 1,000 ㎍/mL that does not effect the viability of the B16F10 cell line. The result of collagen production test using ELISA kit, liposomes containing acerola extract mixture showed collagen synthesis ability by 152.1% at 1,000 ㎍/mL that does not affect the viability of the HS68 cell line. But it did not showed any inhibition of collagenase (MMP-1) activity at all concentrations in the MMP-1 activity inhibition test in the HS68 cell line. We performed clinical studies for the whitening and skin-wrinkle activity of cream containing acerola extract mixes liposome, was showed that the melanin contents and wrinkle was statistically significant reduction. These results suggest that liposomes containing acerola extract mixture have safe natural material, and skin wrinkle, whitening effects allowing their application in cosmetics as a natural product.

Proliposomal Clenbuterol Patch for Transdermal Delivery (프로리포솜을 이용한 클렌부테롤의 경피흡수 제제화)

  • Lee, Young-Joo;Chung, Suk-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.303-311
    • /
    • 1997
  • Proliposomal patch of clenbuterol, ${\beta}_2-agonist$ bronchodilator, was prepared and its feasibility as a novel transdermal drug delivery system was examined. Proliposomal granules containing clenbuterol was prepared by a standard method using sorbitol and lecithin with (Rx 2) or without cholesterol (Rx 1). The porous structure of sorbitol in the proliposomes was maintained allowing tree flowability of the granules. Following contact with water, the granules were converted probably to liposomes almost completely within several minutes. It indicates that proliposomes may be hydrated, when they are applied on the skin under occlusive condition in vivo, by the sweat to form liposomes. Clenbuterol release from Rx 1 and Rx 2 proliposomes to pH 7.4 isotonic phospate buffer (PBS) across cellulose membrane (mol. wt. cut-off of 12000-14000) was retarded significantly compared with that from the mixture of clenbuterol powder and blank proliposomes. Interestingly, proliposomes prepared with lecithin and cholesterol (i.e., Rx 2 proliposomes) showed much more retarded release of clenbuterol than proliposomes prepared only with lecithin (i.e.. Rx 1 proliposomes), indicating that clenbuterol release from proliposomes can be controlled by the addition of cholesterol to the proliposomes. Proliposomal patches were prepared using PVC film as an occlusive backing sheet, two sides adhesive tape (urethane, 1.45 mm thickness) as a reservoir for proliposome granules and Millipore MF-membrane (0.45 mm pore size) as a drug release-controlling membrane. Rx 1 or Rx 2 proliposomes containing 4.6 mg of clenbuterol were loaded into the reservoir of the patch. Clenbuterol release from the patches to pH 7.4 PBS was determined using USP paddle (50 rpm)-over-disc release method. Clenbuterol release from the proliposomal patches was much more retarded even than from a matrix type clenbuterol patch (Boehringer Ingelheim ltd). Being consistent with clenbuterol release from the proliposomal granules, the release from the patches was highly dependent on the presence of cholesterol in the proliposomes : Patches containing Rx 2 proliposomes showed several fold slower drug release than patches containing Rx 1 proliposomes. When the patch containing Rx 1 proliposomes was applied on to the back of a hair-removed rat, clenbuterol concentration in the rat blood was maintained during 6-72 hrs. Transdermal absorption of clenbuterol from the patch was accelerated when the patch was prehydrated with 50 ml of pH 7.4 PBS before topical application. Above results indicate that sustained transdermal delivery of clenbuterol is feasible using proliposomal patches if the cholesterol content and pore size of the release rate-controlling membrane of patches, for example, are appropriately controlled.

  • PDF

Purification of Band 3 from the Human Erythrocyte Membrane and its Incorporation into Liposome (사람 적혈구막 Band 3의 정제 및 Liposome으로의 도입)

  • Kim, Jae-Ryong;Kim, Jung-Hye;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Band 3, the predominent 95,000 dalton anion transport protein, is the major intrinsic glycoprotein of the human erythrocyte membrane. This anion carrier exists as a dimer and binds the cytoskeletons such as spectrin, ankyrin and actin. And the liposomes are vesicular structures which form spontaneouly upon hydration of phospholipids. These artificial lipid vesicles have been investigated as model of the biological membranes and as a mean of improving the delivery of nucleic acids, drugs, proteins and biological substances to specific target tissues and cells. In this study, we were purified Band 3 from the human erythrocyte membrane(ghost) was prepared by hemolysis of intact human erythrocyte with weak alkali-hypotonic solution. Band 6 was removed from ghost by extracting with solution of an ionic strength of 0.15. Band 3 and Band 4 were solubilized selectively by extracting Band 6-depleted ghosts with Triton X-100 under nondenaturing conditions. Band 3 was then purified from Triton X-100 extract treated with p-chloromercuribenzoate by sucrose density gradient ultracentrifugation. This purified Band 3 was incorporated into liposomes prepared by reverse-phase evaporation. Phosphatidyl L-serine and cholesterol(1 : 1 molar ratio) were dissolved in chloroform and then chloroform was removed by rotatory evaporation under reduced pressure. Band 3 solution without Triton X-100 was introduced into a mixture of lipids and diethylether. Diethylether was subsequently removed by evaporation. This purified Band 3 and its incorporation into liposomes were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  • PDF

Antioxidative Effects of Soybean Extracts by using Various Solvents (다양한 용매를 이용한 대두 추출물의 항산화효과)

  • Kim, Jee-Young;Maeng, Young-Sun;Lee, Ki-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.635-639
    • /
    • 1995
  • The effective extraction of antioxidative substances from soybean was investigated by using various solvents, such as water, ethanol, methanol, acetone, chloroform, benzene, ethyl acetate, ether, dichloromethane, and hexane. Extraction was performed by cold method at $30^{\circ}C$ and by reflux method at $85^{\circ}C$. The antioxidative effect of the extracts was determined by peroxide value during the oxidation of soybean oil containing the extracts at $105^{\circ}C$ for 10 hours, and also by TBARS(thiobarbituric acid reactive substances) formed during the peroxidation of egg lecithin liposomes. The antioxidant activity of the extracts from raw soybean was higher than that from defatted soybean. The antioxidant activity of the extracts by reflux method was higher than that by cold method. The methanol extract from defatted and roasted soybean(DRS) showed the highest antioxidative effect against oxidation of soybean oil, while the water extract from DRS in egg lecithin liposomes. In the peroxidation of egg lecithin liposomes, the antioxidative effect of polar solvents extracts were higher than those by nonpolar solvents extracts.

  • PDF

In Vitro and In Vivo Studies of Different Liposomes Containing Topotecan

  • Hao, Yan-Li;Deng, Ying-Jie;Chen, Yan;Wang, Xiu-Min;Zhong, Hai-Jun;Suo, Xu-Bin
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.626-635
    • /
    • 2005
  • Liposome as a carrier of topotecan (TPT), a promising anticancer drug, has been reported in attempt to improve the stability and antitumor activity of TPT. However, the biodistr ibution pattern of TPT liposome in vivo and PEG-modified liposome containing TPT have not been studied systemically. In this paper, the in vitro stability and in vivo biodistribution behavior of several liposomes containing TPT with different lipid compositions and PEG-modification were studied. Compared with the 'fluid' liposome (S-Lip) composed of soybean phosphatidylcholine (SPC), the 'solid' liposome (H-Lip) composed of hydrogenated soybean phosphatidylcholine HSPC decreased the leaking efficiency of TPT from liposome and enhanced the stability of liposome in fetal bovine serum (FBS) or human blood plasma (HBP). The results of biodistribution studies in S$_{180}$ tumor-bearing mice showed that liposomal encapsulation increased the concentrations of total TPT and the ratio of lactone form in plasma. Compared with free TPT, S-Lip and H-Lip resulted in 5- and 19- fold increase in the area under the curve (AUC$_{0\rightarrow\propto}$), respectively. PEG- modified H-Lip (H-PEG) showed 3.7-fold increase in AUC$_{0\rightarrow\propto}$ compared with H-Lip, but there was no significant increase in t$_{1/2}$ and AUC$_{0\rightarrow\propto}$ for PEG-modified S-Lip (S-PEG) compared with S-Lip. Moreover, the liposomal encapsulation changed the biodistribution behavior, and H-Lip and H-PEG dramatically increased the accumulation of TPT in tumor, and the relative tumor uptake ratios were 3.4 and 4.3 compared with free drug, respectively. There was also a marked increase in the distribution of TPT in lung when the drug was encapsulated into H-Lip and H-PEG. Moreover, H-PEG decreased the accumulation of TPT in bore marrow compared with unmodified H-Lip. All these results indicated that the membrane fluidity of liposome has an important effect on in vitro stability and in vivo biodistribution pattern of liposomes containing TPT, and PEG-modified 'solid' liposome may be an efficient carrier of TPT.