• Title/Summary/Keyword: Lipopolysaccharide-induced nitric oxide

Search Result 812, Processing Time 0.028 seconds

Harpagophytum Procumbens Suppresses Lipopolysaccharide Induced Expressions of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in Mouse BV2 Microglial Cells

  • Cho, Hyun-Chol;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.152-161
    • /
    • 2005
  • The excessive release of proinflammatory products by activated microglia causes neurotoxicity, and this has been implicated in the pathogenesis of neurodegenerative diseases. Harpagophytum procumbens (Pedaliaceae) has been widely used for the treatment of pain and arthritis in the clinical field. In this study, we investigated the effect of Harpagophytum procumbens against lipopolysaccharide-induced inflammation. From the present results, the aqueous extract of Harpagophytum procumbens was shown to suppress prostaglandin-E2 synthesis and nitric oxide production by inhibiting the lipopolysaccharide-stimulated enhancement of cyclooxygenase-2 and inducible nitric oxide synthase expressions in mouse BV2 microglial cells. These results suggest that Harpagophytum procumbens may offer a valuable means of therapy for the treatment of brain inflammatory diseases by attenuating lipopolysaccharide-induced prostaglandin-E2 synthesis and nitric oxide production.

  • PDF

The Inhibitory Activity of Erigeron annuus-Derived Components on $Interferon-{\gamma}$ and Lipopolysaccharide-Induced Nitric Oxide Production in Mouse Pheritoneal Macrophage

  • Lee, Hee-Jung;Kim, You-Ah;Jeong, Na-Ho;Hong, Seung-Heon;Seo, Young-Wan
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.160-163
    • /
    • 2007
  • Two flavonoids (1 and 2) and one phenolic acid (3) obtained from Erigeron annuus have recently been shown to have potent antioxidant activities. Aim of this study was to investigate the inhibitory effects of these components on $interferon-{\gamma}$ and lipopolysaccharide-induced nitric oxide productions in the mouse pheritoneal macrophage. Compounds 2 and 3 showed marked inhibitory activities against inducible nitric oxide synthase (iNOS) on the lipopolysaccharide and $interferon-{\gamma}-stimulated$ mouse pheritoneal macrophages without cytotoxicity. Therefore, these results suggest that the compounds could be effective anti-inflammatory agents as nitric oxide inhibitors in vivo.

Molecular Mechanisms of Inhibitory Activities of Tanshinones on Lipopolysaccharide-Induced Nitric Oxide Generation in RAW 264.7 Cells

  • Choi, Hong-Seok;Cho, Dong-Im;Choi, Hoo-Kyun;Im, Suhn-Yong;Ryu, Shi-Yong;Kim , Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1233-1237
    • /
    • 2004
  • The effects of four tanshinones isolated from Tanshen (the root of Salvia miltiorrhiza Bunge, Labiatae) were tested for their inhibition of nitric oxide production in macrophage cells, and the underlying molecular mechanisms studied. Of the four tanshinones used, 15, 16-dihydrotanshinone- I, tanshinone-IIA and cryptotanshinone, but not tanshinone I, demonstrated significant inhibition of the LPS-induced nitric oxide production in RAW 264.7 cells, with calculated $IC_{50}$ values of 5, 8, and 1.5 ${\mu}M$ , respectively. Tanshinones exerted inhibitory activities on the LPS-induced nitric oxide production only when applied concurrently with LPS, and tanshinone- IIA and cryptotanshinone were found to inhibit LPS-induced NF-$_KB$ mobilization and extracellular- regulated kinase (ERK) activation, respectively. These results suggest that tanshinones inhibit LPS-induced nitric oxide generation by interfering with the initial stage of LPS-induced expression of certain genes. NF-$_KB$ and ERK could be the molecular targets for tanshinones for the inhibition of LPS-induced nitric oxide production in macrophage cells.

Inhibition of TCDD Induced Cyplal Expression by SNP In Hepa I Cells

  • Kim, Ji-E.;Sheen, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.315-321
    • /
    • 1999
  • Since it has been known that hypoxia increases inducible nitric oxide synthase (iNOS) gene expression through hypoxia responsive element, it was possible to establish the hypothesis that nitric oxide could be a mediator of hypoxia to inhibit Cyplal promoter activity. In order to test this hypothesis, we have undertaken the study to examine the effects of hypoxia and nitric oxide on Cyplal promoter activity in Hepa I cells. Mouse Cyplal 5'flanking DNA, 1.6 Kb was cloned into pGL3 expression vector in order to construct pmCyplal-Luc. Hepa I cells were transfected with pmCyplal-Luc and were treated with $10^{-9}$ M TCDD and nitric oxide producing agents, such as lipopolysaccharide(LPS), sodium nitroprusside (SNP). Luciferase activity of reporter gene was measured from pmCyplal-Luc transfected Hepa I cell lysate which contains 2 g total protein using luciferin as a substrate. Nitric oxide producing agents, such as lipopolysaccharide (LPS), sodium nitroprusside(SNP) showed inhibition of luciferase activity that was induced by $10^{-9}$M TCDD treatment with dose dependent manner. Concomitant treatment of 1mM $N^G$-nitro-ι-arginine with $10^{-6}$~$10^{-4}$M sodium nitro-prusside recovered luciferase activity from the TCDD induced luciferase activity that was inhibited by nitric oxide producing agents. These demonstrated that nitric oxide could be a mediator of inhibitors on dioxin induced Cyplal expression in Hepa I cells.

  • PDF

Effect of Immunosuppressants on Lipopolysaccharide-Induced Changes of Nitric Oxide Synthase Activity in Liver and Brain of Mice (면역억제제가 Lipopolysaccharide에 의한 생쥐의 간 및 뇌조직의 Nitric Oxide Synthase 활성도의 변화에 미치는 영향)

  • Min, Byung-Woo;Han, Hyng-Soo;Park, Jung-Sook;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.233-239
    • /
    • 1995
  • To verify the effect of immunosuppressants on the endotoxin-induced increase in iNOS activity, the action of immunosuppressants, dexamethasone (1.5 mg/kg), azathioprine (5 mg/kg/day) and cyclosporine (10 mg/kg), were evaluated in mice pretreated with LPS. The intraperitoneal injection of lipopolysaccharide (10 mg/kg) increased the nitric oxide synthase (NOS) activity in the brain and liver to maximum at 1 and 3 hours, respectively. The increase in NOS activity was blocked by the treatment with NOS inhibitor, LNAME(300 mg/kg) and aminoguanidine(100 mg/kg); a protein inhibitor, cycloheximide (10 mg/kg); and a transcription inhibitor of inducible NOS(iNOS), dexamethasone(1.5 mg/kg). Immunosuppressants, azathioprine (5 mg/kg) and cyclosporine (10 mg/kg), effectively blocked the increase in NOS activity. These results suggest that iNOS expression plays an important role in LPS-induced the increase in NOS activity and that immunosuppressants can be used as candidate for therapeutic agents in endotoxemia.

  • PDF

Human placental extract suppresses lipopolysaccharide-induced expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells

  • Yang, Sang-Eun;Kim, Yong-Suk;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.22 no.2
    • /
    • pp.111-121
    • /
    • 2005
  • Human placental extract (HPE), which is prepared from the placenta of healthy pregnant females, has been widely used in clinical field. HPE is known to possess anti-inflammatory, anti-viral, anti-oxidative, anti-mutagenic, and analgesic properties. In this study, the effect of HPE against lipopolysaccharide (LPS)-induced inflammation was investigated. From the present results, HPE was shown to suppress prostaglandin E2 synthesis (PGE2) and nitric oxide (NO) production by inhibition on the LPS-stimulated enhancement of the cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions in mouse BV2 microglial cells. These results suggest that HPE may offer a valuable mean of therapy for the treatment of brain inflammatory diseases by attenuating LPS-induced PGE2 and NO production.

  • PDF

Anti-inflammatory effect of various solvent extract from Atractylodes japonica on Lipopolysaccharide-induced Inflammation in BV2 cells. (창출 추출물의 BV2 cell 소염작용에 관한 실험적 연구)

  • Hur, Inn-Hee;Sim, Sung-Yong;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.2 s.33
    • /
    • pp.36-46
    • /
    • 2007
  • Objective : In this study, the effect of Atractylodes japonica against LPS induced inflammation in mouse microglia BV2 cells was investigated. Method : Microglia BV2 Cells viability was determined using the MTT assay. We used water, ethanol extract from Atractylodes japonica and studied on the anti-inflammatory effect of lipopolysaccharide-induced inflammation using reverse transcription polymerase chain reaction (RT-PCR), western blot, and nitric oxide detection on mouse microglia BV2 cells. Result : The MTT assay revealed that it's extract has no significant cytotoxicity in the microglia BV2 cell. Various solvent extract from Atractylodes japonica inhibited nitrite production, iNOS protein and mRNA expression levels. And also it's extracts significantly reduced lipopolysaccharide-induced COX-2 activation in RT-PCR and western blot in lipopolysaccharide-induced microglia BV2 cells Conclusion : In this study, it's extracts was shown to suppress NO production by inhibiting iNOS expression and COX-2 activity. With this effects of anti-inflammation, we suggests that, it's extracts may be a useful candidate for the development of a drug on the related inflammatory diseases in brain.

  • PDF

Aqueous extract of Paeonia radix suppresses lipopolysaccharide-induced expressions of cyclooygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells

  • Hong, Sung-Kwan;Kim, Youn-Sub;Yang, Hye-Young;Chang, Hyun-Kyung;Kim, Yu-Mi;Shin, Mal-Soon;Baek, Seung-Soo;Kim, Chang-Ju
    • Advances in Traditional Medicine
    • /
    • v.7 no.5
    • /
    • pp.540-548
    • /
    • 2008
  • Paeonia radix is the root of Paeonia aliflora Pallas, which is a perennial plant classified in the family Paeoniaceae. Paeonia radix possesses several pharmacological effects such as analgesic, anti-inflammatory and anti-allergic, anti-oxidative, and anti-coagulant activities. In this study, we investigated the effect of the aqueous extract of Paeonia radix on the lipopolysaccharide-induced inflammation in mouse BV2 microglial cells. The aqueous extract of Paeonia radix at respective concentration was treated one hour before lipopolysaccharide treatment. In the present results, the aqueous extract of Paeonia radix suppressed prostaglandin $E_2$ synthesis and nitric oxide production by inhibiting the lipopolysaccharide-stimulated mRNA expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. These results demonstrate that Paeonia radix exerts anti-inflammatory and analgesic effects probably by suppressing mRNA expressions of cyclooxygenase-2 and inducible nitric oxide synthesis. The present study demonstrates that Paeonia radix may offer a valuable mean of therapy for brain inflammatory diseases.

Anti-inflammatory Effects of Asiaticoside on Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in RAW 264.7 Cell Line (Asiaticoside가 RAW 264,7 세포에서 Inducible nitric oxide synthase와 Cyclooxygenase-2에 미치는 항염증 작용에 관한 연구)

  • 주상섭;배옥남;정진호
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • Asiaticoside has been tested for the ability as an anti-inflammatory drug using lipopolysaccharide (LPS)-stimulated macrophage cell line (RAW 264.7 cell). LPS treatment induced dramatically inducible nitric oxide synthase (iNOS) in RAW cells. However, asiaticoside inhibited LPS-stimulated iNOS induction in a concentration-dependent manner. Especially, higher concentrations (>50 $\mu\textrm{M}$) of asiaticoside completely blocked iNOS induction. In addition, LPS-stimulated expression of inducible cyclooxygenase (COX-2) and interleukin-1 $\alpha$ (IL-1 $\alpha$) was inhibited by asiaticoside treatment. Asiaticoside up to 50 $\mu\textrm{M}$ still required to inhibit COX-2 and IL-1 $\alpha$ induced by LPS. Consistent with these findings, treatment with asiaticoside suppressed do novo synthesis and cellular accumulation of prostaglandin $E_2$ to a lesser extent, suggesting that asiaticoside blocked the induction as well as the activity of COX-2 These results suggest the possibility that asiaticoside may be effective therapeutic agents for septic shock and other inflammatory diseases.

Inhibitory effects of Coptidis Rhizoma on the LPS-induced production of nitric oxide and $TNF-{\alpha}$ in mouse macrophage cells (황련의 쥐 대식세포로부터 LPS에 의해 유도되는 nitric oxide 및 $TNF-{\alpha}$의 생성억제효과)

  • Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2006
  • Objectives : Coptidis Rhizoma has been known traditional medicine with antimicrobial activities. We investigated inhibitory effects of Coptidis Rhizoma extract on lipopolysaccharide(LPS)-induced nitric oxide production from mouse macrophages. Methods : After Coptidis Rhizoma extract was pretreated in BV2, mouse brain macrophages and RAW264.7 mouse macrophages, cells were activated with LPS. To investigate cytotoxicity Coptidis Rhizoma extract, cell viability was measured by MTT assay. The production of nitric oxide(NO) and inducible nitric oxide synthase(iNOS) was determined in each culture supernatant and mRNA by Griess reaction and RT-PCR. The production of $TNF-{\alpha}$ from cells was measured by ELISA. Results : Coptidis Rhizoma extract significantly inhibited LPS-induced NO production in BV2 and RAW264.7 cells. Coptidis Rhizoma extract also greatly suppressed mRNA expression of iNOS in BV2 and RAW264.7 cells activated by LPS. Conclusion : These data suggests that Coptidis Rhizoma extract may have an anti-inflammatory effect through the inhibition of NO production.

  • PDF