• Title/Summary/Keyword: Lipopeptide biosurfactant

Search Result 15, Processing Time 0.028 seconds

Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater

  • Cheng, Fangyu;Tang, Cheng;Yang, Huan;Yu, Huimin;Chen, Yu;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.390-396
    • /
    • 2013
  • Biosurfactants have versatile properties and potential industrial applications. A new producer, B. subtilis TU2, was isolated from the underground oil-extraction wastewater of Shengli Oilfield, China. Preliminary flask culture showed that the titer of biosurfactant obtained from the broth of TU2 was ~1.5 g/l at 48 h (718 mg/l after purification), with a reduced surface tension of 32.5 mN/m. The critical micelle concentration was measured as 50 mg/l and the surface tension maintained stability in solution with 50 g/l NaCl and 16 g/l $CaCl_2$ after 5 days of incubation at $70^{\circ}C$. FT-IR spectra exhibited the structure information of both glycolipid and lipopeptide. MALDI-TOF-MS analyses confirmed that the biosurfactant produced by B. subtilis TU2 was a blend of glycolipid and lipopeptide, including rhamnolipid, surfactin, and fengycin. The blended biosurfactant showed 86% of oil-washing efficiency and fine emulsification activity on crude oil, suggesting its potential application in enhanced oil recovery.

Influence of Surfactants on Bacterial Adhesion to Metal Oxide-Coated Surfaces

  • Choi, Nag-Choul;Park, Seong-Jik;Lee, Chang-Gu;Park, Jeong-Ann;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.219-225
    • /
    • 2011
  • The objective of this study was to investigate the bacterial adhesion to iron (hydr)oxide-coated sand (IHCS) and aluminum oxidecoated sand (AOCS) in the presence of Tween 20 (nonionic surfactant) and lipopeptide biosurfactant (anionic surfactant) through column experiments. Results show that in the presence of Tween 20, bacterial adhesion to the coated sands was slightly decreased compared to the condition of deionized water; the mass recovery (Mr) increased from 0.491 to 0.550 in IHCS and from 0.279 to 0.380 in AOCS. The bacterial adhesion to the coated sands was greatly reduced in lipopeptide biosurfactant; Mr increased to 0.980 in IHCS and to 0.797 in AOCS. Results indicate that the impact of lipopeptide biosurfactant on bacterial adhesion to metal oxide-coated sands was significantly greater than that of Tween 20. Our results differed from those of the previous report, showing that Tween 20 was the most effective while the biosurfactant was the least effective in the reduction of bacterial adhesion to porous media. This discrepancy could be ascribed to the different surface charges of porous media used in the experiments. This study indicates that lipopeptide biosurfactant can play an important role in enhancing the bacterial transport in geochemically heterogeneous porous media.

Isolation, Characterization, and Investigation of Surface and Hemolytic Activities of a Lipopeptide Biosurfactant Produced by Bacillus subtilis ATCC 6633

  • Dehghan-Noudeh Gholamreza;Housaindokht Mohammadreza;Bazzaz Bibi Sedigeh Fazly
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.272-276
    • /
    • 2005
  • Bacillus subtilis ATCC 6633 was grown in BHIB medium supplemented with $Mn^{2+}$ for 96 h at $37^{\circ}C$ in a shaker incubator. After removing the microbial biomass, a lipopeptide biosurfactant was extracted from the supernatant. Its structure was established by chemical and spectroscopy methods. The structure was confirmed by physical properties, such as Hydrophile-Lipophile Balance (HLB), surface activity and erythrocyte hemolytic capacity. The critical micelle concentration (cmc) and erythrocyte hemolytic capacity of the biosurfactant were compared to those of surfactants such as SDS, BC (benzalkonium chloride), TTAB (tetradecyltrimethylammonium bromide) and HTAB (hexadecyltrimethylammonium bromide). The maximum hemolytic effect for all surfactants mentioned was observed at concentrations above cmc. The maximum hemolytic effect of synthetic surfactants was more than that of the biosurfactant produced by B. subtilis ATCC 6633. Therefore, biosurfactant would be considered a suitable surface-active agent due to low toxicity to the membrane.

A Lipopeptide Biosurfactant Produced by Bacillus subtilis C9 Selected through the Oil Film-collapsing Assay

  • Kim, Hee-Sik;Lee, Chang-Ho;Suh, Hyun-Hyo;Ahn, Keug-Hyun;Oh, Hee-Mock;Kwon, Gi-Seok;Yang, Ji-Won;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.180-188
    • /
    • 1997
  • Bacillus subtilis C9 was selected by measuring the oil film-collapsing activity and produced biosurfactant in a medium containing glucose as a sole carbon source. The biosurfactant emulsified hydrocarbons, vegetable oils and crude oil, and lowered the surface tension of culture broth to 28 dyne/cm. A biosurfactant, C9-BS produced by B. subtilis C9 was purified by ultrafiltration, extraction with chloroform and methanol, adsorption chromatography, and preparative reversed phase HPLC. Structural analyses, IR spectroscopy, FAB mass spectroscopy, amino acid composition, and NMR analyses, demonstrated that C9-BS was a lipopeptide comprising a fatty acid tail and peptide moiety. The lipophilic part consisting of $C_{14}\;or\;C_{15}$ hydroxy fatty acid was linked to the hydrophilic peptide part, which contained seven amino acids (Glu-Leu-Leu-Val-Asp-Leu-Leu) with a lactone linkage.

  • PDF

Production and Characterization of Lipopeptide Biosurfactant from Bacillus subtilis A8-8

  • Lee Sang-Cheol;Yoo Ju-Soon;Kim Sun-Hee;Chung Soo-Yeol;Hwang Cher-Won;Joo Woo-Hong;Choi Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.716-723
    • /
    • 2006
  • A biosurfactant-producing bacterial strain was selected from oil-contaminated soil because of its ability to degrade crude oil and tributyrin $(C_{4:0})$. The strain was identified as Bacillus subtilis A8-8 based on its morphological, biochemical, and physiological characteristics. When B. subtilis A8-8 was grown with crude oil as the sole carbon source, the biosurfactant from the strain emulsified crude oil, vegetable oil, and hydrocarbons. Soybean oil was the optimum substrate for the emulsifying activity and emulsion stability of the biosurfactant, both of which were superior to those of several commercially available surfactants. The biosurfactant was purified by a procedure including HCl precipitation, methanol treatment, and silica-gel chromatography. The partially purified biosurfactant was analyzed by TLC (thin-layer chromatography), SDS-PAGE, and HPLC and it reduced the surface tension of water from 72 mN/m to 26 mN/m at a concentration of 30 mg/l. Therefore, the purified lipopeptide biosurfactant has strong properties as an emulsifying agent and acts as an emulsion-stabilizing agent.

Biosurfactant Production from Phenanthrene Degrading Bacteria (Phenanthrene 분해균주로부터 미생물 계면활성제의 생산)

  • Han, Chang-Sung;Yun, Hyun-Shik;Seo, Hyung-Joon;Kim, Eun-Ki
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.737-741
    • /
    • 1999
  • Phenanthrene degrading bacteria were isolated from the petroleum contaminated soil near an oil tank. Four of 15 strains decreased surface tension of culture broth of phenanthrene-containing minimal media. H6, one of the isolated bacteria decreased surface tension of culture broth below 33 dyne/cm during growth on glucose. H6 was identified as Bacillus subtilis and biosurfactant produced by H6 was lipopeptide. The biosurfactant was produced at 0.13 g/L in the mineral medium containing 2% glucose. Critical micelle concentration(CMC) of the biosurfactant was 52 mg/L. Foaming power was similar to Tween 80 and dispersing power was superior to Tween 80m SDS and Brij30. High thermal stability and emulsion index were also observed.

  • PDF

Antimicrobial activity by Paenibacillus elgii DS381 and its antimicrobial substances against microbial residents on human skin and pathogenic bacteria (인간 피부 상재균과 병원성 세균에 대한 Paenibacillus elgii DS381과 그 항균물질의 항균활성)

  • Lee, Da-Sol;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.244-253
    • /
    • 2018
  • This study was carried out to evaluate effects of antimicrobial substances produced by isolated soil bacteria. Among two thousands of bacterial isolates Paenibacillus elgii DS381 exhibited high antimicrobial activities against several microbial residents on human skin and pathogenic bacteria. DS381 showed 15.3~26.0 mm inhibition zone diameter against all target bacteria and yeast in agar well diffusion test. Antimicrobial peptide produced by DS381 indicated low minimum inhibitory concentration (0.039-5.000 mg/ml). DS381 produced biosurfactant such as lipopeptide, and surface tension of culture supernatant of DS381 reduced from 60.0 to 40.3 mN/m. DS381 also showed $1.56{\pm}0.13U/ml$ of chitinase activity. These results suggest that Paenibacillus elgii DS381 may be utilized as an efficient biocontrol agent against some important human skin microbes and pathogenic bacteria.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Novel oxygenation for lipopeptide production from Bacillus sp. GB16

  • Lee, Baek-Seok;Lee, Jae-Woo;Shin, Haw-Shook;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.240-244
    • /
    • 2003
  • A novel integrated method for increasing dissolved oxygen concentration in culture media has been developed. It involves adding hydrogen peroxide to the medium, which is then decomposed to oxygen and water by catalase and adding vegetable oil to the medium as antifoam agent and oxygen vector. A new apparatus for automated addition of hydrogen peroxide to the bioreactor to keep the dissolved oxygen concentration constant over the range $10-100%\;{\pm}\;5%$ was tested. A significant increase (over threefold) of cultivation time was obtained while the dissolved oxygen concentration remained stable ($30%\;{\pm}\;5%$). Therefore, use of corn oil mixed with Ca-stearate as oxygen vector and antifoam and hydrogen peroxide as oxygen source to control excessive foam that was generated by microorganism biosurfactant, GB16-BS produced at Bacillus sp. GB16 cultivation was appropriate for stable cultivation.

  • PDF