• Title/Summary/Keyword: Lipid membrane

Search Result 544, Processing Time 0.025 seconds

Evaluation of a Thermophilic Two-Phase Anaerobic Digestion Coupled with Membrane Process for Garbage Leachate Treatment (음식물 탈리액 처리를 위한 막결합형 고온 2상 혐기성 소화 공정의 평가)

  • Lee, Eun-Young;Jun, Duk-Woo;Lee, Sang-Hwa;Bae, Jae-Ho;Kim, Jeong-Hwan;Kim, Young-O
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This study evaluated the performance of a thermophilic two-phase anaerobic digestion (TTPAD) coupled with membrane process treating garbage leachate. The pilot-scale treatment system is consisted of thermophilic acidogenic reactor (TAR) and thermophilic methanogenic reactor (TMR) coupled with an ultrafiltration (UF) membrane unit. The hydraulic retention time of TAR and TMR were 4 and 20 days, respectively. Effluent TCOD and SCOD of the TTPAD were $25\;{\pm}\;6\;and\;12\;{\pm}\;3$ g/L, respectively, and the corresponding TCOD and SCOD removal efficiencies were 77% and 81%, respectively. Propionate was major acids as 75% in the effluent. Scum formation was not observed in TTPAD, which might be resulted from complete lipid degradation. However, TTPAD was appeared to be sensitive to free ammonia toxicity. The UF membrane was operated with constant pressure filtration at average TMP 1.3 atm. Permeate flux had a range of 15-30 $L/m^2/hr$. With UF membrane, TCOD removal increased from 77% to 93%, and this SS free effluent would be beneficial to subsequent processes such as ammonia stripping.

Scavenging Effects of Free Radicals and Inhibitory Effects of Lipid Peroxidation of Bupleury Radix Aqua-Acupuncture Solution in Vitro (시호 약침제제의 자유기 소거능 및 지질과산화 억제효능에 관한 연구)

  • Moon Jin-Young;Lim Jong-Kook
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.135-145
    • /
    • 1998
  • Bupleury radix has been used for the treatment of fever, liver disease, inflammation in traditional medicine. The present study was carried out to evaluate the antioxidant effects of Bupleury radix aqua-acupuncture solution (BRAS) in vitro. Oxygen derived free radicals produced in the course of normal aerobic life, such as superoxide anion radical($O_2^-$ ), hydroxyl radicaI( OH), hydrogen peroxide($H_2O_2$) and singlet oxygen($^1O_2$) can attack polyunsaturated fatty acid in cell membranes, enzymes, other cell compounds, and give rise to lipid peroxidation, DNA damage, lipofuscin accumulation, structure alteration of cell membrane and cell death. In this study, antioxidant effects of BRAS on lipid peroxidation were determined according to the method of TBA. BRAS inhibited markedly peroxidation of linoleic acid during the autoxidation, and also inhibited lipid peroxidation induced by hydroxyl radical derived from $H_2O_2-Fe^{2+}$ in rat liver homogenate. And BRAS showed 30% scavenging effect on DPPH radical, also exhibited a 30% inhibitory effect on superoxide generation from xanthine-xanthine oxidase system. In addition, BRAS protected the cell death induced by tert-butyl hydroperoxide(t-BHP) and significantly increased cell viability in the normal rat liver cell(Ac2F).

  • PDF

Effect of Vitamin A and $B_2$ Derivatives on Aminopyrine Demethylase Activity (비타민 A 및 $B_2$ 유도체의 Aminopyrine Demethylase 활성도에 대한 영향)

  • 이향우
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.53-59
    • /
    • 1984
  • Drug-metabolizing system which has the important role in drug metabolism is localized in smooth endoplasmic reticulum of hepatocytes and is composed of NADPH, NADPH-cytochrome $P_{450}$ reductase, cytochrome $P_{450}$ and others. It is well known that the enzyme system is induced by phenobarbital and methylcholanthrene. Lipid peroxidation is reaction of oxidative deterioration of polyunsaturated lipids. Formation of lipid peroxides in liver microsome has been found to produce degradation of phospholipid, which are major components of microsomal membrane. The relationship between the formation of lipid oxides and the activities of drug-metabolizing enzyme in the liver of rats was reported by several investigators. In this study the effect of riboflavin tetrabutylate, an antioxidant on lipid peroxidation, specially the relationship between lipid peroxidation and drug-metabolizing enzyme system was investigated. In addition the effect of vitamin A derivatives, such as retinoic acid and retinoid on the enzyme was also observed. Results are summarized as followings. 1) The pretretment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_{4}$ treatment. 2) The increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. 3) The pretreatment with riboflavin tetrabutylate also prevented the decrease of drug-metabolizing enzyme caused by $CCl_{4}$. 4) Both retinoic acid and retinoid remarkably decreased the activity of aminopyrine demethylase. Pretreatment of riboflavin tetrabutylate, however, prevented inhibitory effect of retinoic acid on the enzyme activity.

  • PDF

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin;Lee, Hyeong Ju;Lee, Hee Cheon;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.743-748
    • /
    • 2013
  • The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

Phospholipid Analysis by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

  • Moon, Myeong Hee
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Lipids play important roles in biological systems; they store energy, play a structural role in the cell membrane, and are involved in cell growth, signal transduction, and apoptosis. Phospholipids (PLs) in particular have received attention in the medical and lipidomics research fields because of their involvement in human diseases such as diabetes, obesity, atherosclerosis, and many cancers associated with lipid metabolic disorders. Here I review experimental strategies for PL analysis based on nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MSn). In particular, discussed are lipid extraction methods, nanoflow LC separation of PLs, effect of ionization modifiers on the ESI of PLs, influence of chain lengths and unsaturation degree of acyl chains of PLs on MS intensity, structural determination of the molecular structure of PLs and their oxidized products, and quantitative profiling of PLs from biological samples such as tissue, urine, and plasma in relation to cancer and coronary artery disease.

Ginseng Extract Protects Unsaturated Fatty acid from Decomposition Caused by Iron-Mediated Lipid Peroxidation

  • Okada, Shi-Geru;Zhang, Da-Xian
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.57-62
    • /
    • 1998
  • We hypothesized the primary effect of ginseng was to protect cell membrane fatty acids from decomposition caused by free radicals. To confirm the antioxidant effect of ginseng, we measured the inhibitory effect on the formation of thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, and evaluated the free radical scavenging effect of ginseng by electron spin resonance spectrometer, and gas chromatography. The results showed that thiobarbituric acid-reactive substances formed and the loss of arachidonic acid during lipid peroxidation, and that hydroxyl (-like) radical peak formed by the iron complex (ferric nitrilotriacetate, an known free radical generator in vitro) were completely inhibited by ginseng extract. This antioxidant effect of ginseng may be responsible for its wide pharmacological actions in clinical practice. As the free radical reactions in general are rapid and non-specific, ginseng seems to act as a normalizer, rather than a general tonic, at the stages of acute or chronic active phase of the various diseases.

  • PDF

Elctrical Properties of DLPC Lipid Membrane Fabricated on the Silicon Wafer (실리콘 웨이퍼 위에 제작된 DLPC 지질막의 전기적특성)

  • 이우선;김충원;이강현;정용호;김남오;김상용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1115-1121
    • /
    • 1998
  • MLS capacitor with lipid ultra thin films were deposited by Langmuir-Blodgett (LB) method on the silicon wafer. The current versus voltage and capacitance versus voltage relationships are depend on the applied voltage, electrode area and electrode materials. LB films deposited were made of L-$\alhpa$-DLPC, the 1 layer’s thickness of 35${\AA}$ was measured by ellipsometer. And MLS capacitor with different electrode materials, the work function of these materials was investigated to increase the leakage current. The result indicated the lower leakage current and very high saturation value of capacitance was reached within 700-800 pF when the two electrode was Ag. And $\varepsilon$1, $\varepsilon$2 versus photon energy showed good film formation.

  • PDF

Mechanism of action of ferroptosis and its role in liver diseases

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.159-164
    • /
    • 2023
  • Ferroptosis is a type of regulated cell death recently discovered, characterized by the accumulation of iron-dependent lipid peroxides in the cell membrane, and it involves a complex network of signaling pathways, including iron metabolism, lipid peroxidation, and redox regulation. The dysregulation of these pathways can lead to the induction of ferroptosis and the development of liver diseases, such as alcoholic liver disease, non-alcoholic fatty liver disease, viral hepatitis, and liver cancer. Studies have demonstrated that targeting key molecules involved in iron metabolism, lipid peroxidation, and redox regulation can reduce liver injury and improve liver function in different liver diseases by inhibiting ferroptosis. Thus, modulation of ferroptosis presents a promising therapeutic target for treating liver diseases. However, further research is required to gain a more comprehensive understanding of the mechanisms underlying the role of ferroptosis in liver diseases and to develop more effective and targeted treatments.

Comparisons of Feeding Ecology of Euphausia pacifica from Korean Waters Using Lipid Composition (한국 근해의 난바다곤쟁이 Euphausia pacifica의 지방 조성에 의한 섭식 생태 비교)

  • Kim, Hye-Seon;Ju, Se-Jong;Ko, Ah-Ra
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.165-175
    • /
    • 2010
  • Dietary lipid biomarkers (fatty acids, fatty alcohols, and sterols) in adult specimens were analyzed to compare and understand the feeding ecology of the euphausiid, Euphausia pacifica, from three geographically and environmentally diverse Korean waters (Yellow Sea, East China Sea, and East Sea). Total lipid content of E. pacifica from Korean waters was about 10% dry weight (DW) with a dominance of phospholipids (>46.9% of total lipid content), which are known as membrane components. A saturated fatty acid, C16:0, a monounsaturated fatty acid, C18:1(n-9), and two polyunsaturated fatty acids, C20:5(n-3) and 22:6(n-3), were most abundant (>60% of total fatty acids) in the fatty acid composition. Some of the fatty acids showed slight differences among regions although no significant compositional changes of fatty acids were detected between these regions. Phytol, originating from the side chain of chlorophyll and indicative of active feeding on phytoplankton, was detected all samples. Trace amounts of various fatty alcohols were also detected in E. pacifica. Specifically, krill from the Yellow Sea showed relatively high amounts of longchain monounsaturated fatty alcohols (i.e. 20:1 and 22:1), generally found in herbivorous copepods. Three different kinds of sterols were detected in E. pacifica. The most dominant of these sterols was cholest-5-en-$3{\beta}$-ol (cholesterol). The lipid compositions and ratios of fatty acid trophic markers are indicative of herbivory in E. pacifica from the Yellow Sea and East Sea (mainly feeding on dinoflagellates and diatoms, respectively). The lipid compositions and ratios of fatty acid trophic markers are indicative of carnivory or omnivory in E. pacifica from the East China Sea, mainly feeding on microzooplankton such as protozoa. In conclusion, lipid biomarkers provide useful information about krill feeding type. However, further analyses and experiments (i.e. gut content analysis, in situ grazing experiment, etc.) are needed to better understand the feeding ecology of E. pacifica in various marine environments.

Phosphoinositide turnover in Toll-like receptor signaling and trafficking

  • Le, Oanh Thi Tu;Nguyen, Tu Thi Ngoc;Lee, Sang Yoon
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.361-368
    • /
    • 2014
  • Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.