• Title/Summary/Keyword: Lipid Synthesis

Search Result 366, Processing Time 0.027 seconds

A case of simultaneously identified glycogen storage disease and mucopolysaccharidosis (당원병과 뮤코다당체침착증이 동시에 발견된 증례 1예)

  • Lee, Ju Young;Shim, Jeong Ok;Yang, Hye Ran;Chang, Ju Young;Shin, Choong Ho;Ko, Jae Sung;Seo, Jeong Kee;Kim, Woo Sun;Kang, Gyeong Hoon;Song, Jeong Han;Kim, Jong Won
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.6
    • /
    • pp.650-654
    • /
    • 2008
  • Glycogen storage disease (GSD) and mucopolysaccharidosis (MPS) are both independently inherited disorders. GSD is a member of a group of genetic disorders involving enzymes responsible for the synthesis and degradation of glycogen. GSD leads to abnormal tissue concentrations of glycogen, primarily in the liver, muscle, or both. MPS is a member of a group of inherited lysosomal storage diseases, which result from a deficiency in specific enzymatic activities and the accumulation of partially degraded acid mucopolysaccharides. A case of a 16-month-old boy who presented with hepatomegaly is reported. The liver was four finger-breadth-palpable. A laboratory study showed slightly increased serum AST and ALT levels. The liver biopsy showed microscopic features compatible with GSD. The liver glycogen content was 9.3% which was increased in comparison with the reference limit, but the glucose-6-phosphatase activity was within the normal limit. These findings suggested GSD other than type I. Bony abnormalities on skeletal radiographs, including an anterior beak and hook-shaped vertebrae, were seen. The mucopolysaccharide concentration in the urine was increased and the plasma iduronate sulfatase activity was low, which fulfilled the diagnosis criteria for Hunter syndrome (MPS type II). To the best of the authors' knowledge, this is the first case of GSD and Hunter syndrome being identified at the same time.

Effect of Gamma Irradiation and Cichorium Products on Oxidative Damage and Lipid Metabolism in Streptozotocin-Induced Diabetic Rats (감마선 전신 조사와 치커리 가공물 식이가 Streptozotocin 유발 당뇨쥐의 산화적 손상과 지질대사에 미치는 영향)

  • Woo, Hyun-Jung;Kim, Ji-Hyang;Kim, Jin-Kyu;Kim, Hee-Jung;Park, Ki-Beom
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.102-111
    • /
    • 2006
  • The increased occurrence of hyperglycemia and oxidative stress in streptozotocin (STZ) induced type I diabetes has been implicated in the etiology and pathology of disease complication. STZ has known to be genotoxic in a variety of assays including tests for microbial mutagenesis and unscheduled DNA synthesis in rat kidney. Diabetes mellitus (DM) is a pathologic condition, resulting in severe metabolic imbalances and non-physiologic changes in many tissues. We examined the effect of gamma radiation and KWNP on preventing the development of insulin dependent diabetes mellitus using streptozotocin-induced Fisher 344 diabetic rats. The hematological values (red blood cell and white blood cell), serum biochemical constituents-alkaline phosphatase (ALP), total cholesterol, triglycerides and insulin-were checked and the organs (testis, spleen and kidney) were weighed. The gonad indices of the STZ treated groups were much lower than the value of the control group. But the gonad indices of the KWNP treated groups were higher than those of the treated groups. The ratio of the weight of kidney to the body weight of the STZ treated groups was higher than that of the control group. The value of the diabetic group treated with KWNP after irradiation (F group) was lower than the other STZ treated groups. The white blood cell and ALP values of the F group were lower than the other STZ groups, as well. The cholesterol and triglyceride values of all the KWNP treated groups were significantly lower than the other groups. A significant increase (about 10 times) of insulin was detected in the F group. The results of hematological assay showed the distinctive damage in the irradiated and STZ treated groups. The quantity of apoptotic cells in seminiferous tubule of testis confirmed a serious damage as assessed in the STZ treated groups. These experimental results have revealed that treatment of the products of KWNP after irradiation has the antidiabetic effect in the STZ-induced diabetic rats. But the F group showed higher recuperative power. These experimental results have revealed that treatment of the gamma irradiation and KWNP have the recovering effect in the STZ-induced diabetic rats.

Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products (제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과)

  • Kwon, Han Ol;Lee, Minhee;Kim, Yong Jae;Kim, Eun;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.929-937
    • /
    • 2016
  • The purpose of this study was to investigate the effect of Acanthopanax senticosus extract (ASE) (ethanol : DW=1:1, v/v) on inhibition of type 2 diabetes using an OLETF rat model via regulation of HbA1c and AGEs levels. Supplementation with ASE 0.1% and 0.5% effectively lowered levels of glucose, insulin, oral glucose tolerance test, and Homa-insulin resistance, suggesting reduced insulin resistance. Blood levels of HbA1c and AGEs were significantly reduced in a dose-dependent manner. As oxidative stress plays a key role in accelerating production of HbA1c and AGEs, which worsen symptoms of type 2 diabetes, levels of malonaldehyde and pro-inflammatory cytokines were measured. Lipid peroxidation in both blood and liver tissues was significantly reduced, and induction of pro-inflammatory cytokines interleukin-${\beta}$ and tumor necrosis factor-${\alpha}$, which elevate production of HbA1c and AGEs, was inhibited (P<0.05). To evaluate the possible cellular events after AGEs receptor activation, genetic expression of protein kinase C (PKC)-${\delta}$ and transforming growth factor (TGF)-${\beta}$ was measured by real-time polymerase chain reaction. Supplementation with both ASE 0.1% and 0.5% significantly inhibited mRNA expression of PKC-${\delta}$ and TGF-${\beta}$, indicating that ASE may have beneficial effects on preventing insulin-resistant cells or tissues from progressing to diabetic complications. Taken together, ASE has potential to improve type 2 diabetes by inhibiting insulin resistance and protein glycosylation, including production of HbA1c and AGEs. Anti-oxidative activities of ASE are a main requisite for reducing production of HbA1c and AGEs and are also related to regulation of the PKC signaling pathway, resulting in suppression of TGF-${\beta}$, which increases synthesis of collagen, prostaglandin, and disease-related proteins.

Synthesis and Functional Properties of Plastein from the Enzymatic Hydrolysates of Filefish Protein 2. General Properties and IR Spectrum of Plasteins (말쥐치육 단백질의 효소적 가수분해물을 이용한 Plastein의 합성 및 그 물성 2. Plastein의 일반적 성상과 IR Spectrum)

  • KIM Se-Kwon;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.431-440
    • /
    • 1987
  • In order to develop a new type of food source for the effective utilization of fish protein, plastein reaction was applied to improve the functional properties of filefish protein. Plasteins were synthesized from a peptic filefish protein hydrolysate by papain, pepsin, $\alpha-chymotrypsin$ and protease(from Streptomyces griceus) under the optimum conditions of previous paper). Also, L-glutamic acid diethylester and L-leucine ethylester were incorporated into plastein during the plastein reaction by papain. And, General composition, yield, molecular weight, amino acid composition, color and IR spectrum of plasteins were measured. The protein, ash and lipid content of the plasteins were $72\~78\%,\;7.4\~11.8\%\;and\;0.3\~0.9\%$ respectively. The yield of plasteins were papain $55.0\%,\;pepsin\;47.6\%,\;\alpha-chymotrypsin\;38.3\%,\;protease\;23.6\%$, glutamic acid-incorporated plastein (Glu-Plastein) $35.0\%$, and leucine-incorporated plastein (Leu-plastein) $45.7\%$. The glutamic acid and leucine content in Glu-plastein and Leu-plastein were $38.7\%,\;41,7\%$, respectively, while the contents in the peptic filefish protein hydrolysate were $16.01\%\;and\;8.16\%$, respectively. The amino acid compositions were similar to that of the original filefish muscle protein. The major molecular weights of the peptic hydrolysate estimated by gel filteration were 2,000 and 310, and those of plasteihs were 21,000 and 4,900 for papain, 24,000 for pepsin, 18,500 for $\alpha-chymotrypsin$ 6,700 for protease, 24,000 for Glu-plastein and 17,000 for Leu-plastein. The structural changes in freeze-dried filefish meat, the FPC and hydrolysate were not observed on the IR spectrum. But plasteins showed amide I band in $1,600\~l,700cm^{-1}$ range and resulted in a strong band in $800\~850\;cm^{-1},\;700\~750\;cm^{-1}\;and\;650\~700\;cm^{-1}$. The amide I band of Glu-plastein was wider than those of other plasteins and had also a small band at $1,440\;cm^{-1}$.

  • PDF

The Cross-talk Mechanisms of Constitutive Androstane Receptor (CAR) in the Regulation of its Activity, Energy Metabolism, Cellular Proliferation and Apoptosis (Constitutive Androstane Receptor (CAR)의 활성, 에너지 대사 및 세포의 증식과 사멸의 조절에 대한 CAR의 cross-talk 기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • The activity of CAR can be regulated not only by ligand binding but also by phosphorylation of regulatory factors involved in extracellular signaling pathways, cross-talk interactions with transcription factors, and the recruitment, degradation, and expression of coactivators and corepressors. This regulation of CAR activity can in turn have effects on the control of diverse physiological homeostasis, including xenobiotic and energy metabolism, cellular proliferation, and apoptosis. CAR is phosphorylated by the ERK1/2 signaling pathway, which causes formation of a complex with Hsp-90 and CCRP, leading to its cytoplasmic retention, whereas phenobarbital inhibits ERK1/2, which causes dephosphorylation of the downstream signaling molecules, leading to the recruitment to CAR of the activated RACK-1/PP2A components for the dephosphorylation, nuclear translocation, and the transcriptional activation of CAR. Activated CAR cross-talks with FoxO1 to induce inhibition of its transcriptional activity and with PGC-1α to induce protein degradation by ubiquitination, resulting in the transcriptional suppression of PEPCK and G6Pase involved in gluconeogenesis. Regulation by CAR of lipid synthesis and oxidation is achieved by its functional cross-talks, respectively, with PPARγ through the degradation of PGC-1α to inhibit expression of the lipogenic genes and with PPARα through either the suppression of CPT-1 expression or the interaction with PGC-1α each to induce tissue-specific inhibition or stimulation of β-oxidation. Whereas CAR stimulates cellular proliferation by suppressing p21 expression through the inhibition of FoxO1 transcriptional activity and inducing cyclin D1 expression, it suppresses apoptosis by inhibiting the activities of MKK7 and JNK-1 through the expression of GADD45B. In conclusion, CAR is involved in the maintenance of homeostasis by regulating not only xenobiotic metabolism but also energy metabolism, cellular proliferation, and apoptosis through diverse cross-talk interactions with extracellular signaling pathways and intracellular regulatory factors.

Time Course Variation of Vitamin $C_3$ Content in Leg Skin of Broiler Chicks Exposed to Different Dose of UVB Light (자외선의 상이한 선양을 조사한 브로일러 병아리의 다리 피부중 비타민 $C_3$ 함양의 경시적 변화)

  • 장윤환;김강수;여영수;강훈석;조인호;배은경
    • Korean Journal of Poultry Science
    • /
    • v.20 no.2
    • /
    • pp.93-105
    • /
    • 1993
  • This study was carried out to determine the concentrations of previtamin D$_3$(PreD$_3$), lumisterol$_3$(L3), tachystero1$_3$(73), vitamin D$_3$(VD$_3$) and provitamin D$_3$(ProD$_3$) in leg skins of broiler chicks exposed to UVB lights (maximum intensity at 297 nm) with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min irradiation) . The broiler Hubbard line day old chicks(2 dose $\times$9 elapsed time $\times$4 replica+10 control=82) were fed VD-deficient diet for 31 days in a windowless subdued light room. The skin was collected at 0, 6, 12, 18, 30, 42, 66, 90 or 138 hr after UVB irradiation. The skin lipid was extracted by 9% ethyl acetate/n-hexane, and the fraction of VD$_3$ and its analogues was purified by Sep-Pak silica cartridge. The straight phase HPLC was utilized to analyze ProD$_3$ and its products. The mole %(absolute level expressed in ng/$\textrm{cm}^2$) of PreD$_3$ in leg skin (epidermis+dermis) was 4.67%(44 ng/$\textrm{cm}^2$) or 3.97%(37 ng/$\textrm{cm}^2$) right after UVB irradiation by 0.204 or 0.409 mJ/$\textrm{cm}^2$(30 or 60 min) at 15 cm distance, respectively. It content in leg skin at 0 hr after exposure was 7.24%(12 ng/$\textrm{cm}^2$) or 0.92%(9 ng/$\textrm{cm}^2$), respectively. The increase in irradiation dose did not affect proportionally the If synthesis.73 concentration in leg skin was 0.58%(S ng/$\textrm{cm}^2$) or 0.57%(6 ng/$\textrm{cm}^2$), respectively 0 hr after irradiation. The VD$_3$ in leg skin of birds exposed to UVB light with dose of 0.204 or 0.409 mJ/$\textrm{cm}^2$ was 2.13% (21 ng/$\textrm{cm}^2$) or 0.97% (16ng/$\textrm{cm}^2$), respectively at 0 hr after exposure, 2.72%(26ng/$\textrm{cm}^2$) or 3.84%(37ng/$\textrm{cm}^2$), respectively at 6 hr, and 4.30% ((33ng/$\textrm{cm}^2$) or 6.40%(76ng/$\textrm{cm}^2$), respectively at 12 hr. The peak concentration of VD$_3$ was presented at 18 or 30 hr when 0.204 or 0.409 mJ/$\textrm{cm}^2$) was treated, respectively. It was shown that 18~30 hr were necessary for the thermal conversion of PreD$_3$ into VD$_3$ in the leg skin of broiler chicks. The ProD$_3$ contents in leg skins of negative control, 0.204 mJ/$\textrm{cm}^2$ and 0.409 mJ/$\textrm{cm}^2$ treated birds were 966, 948 and 815 ng/$\textrm{cm}^2$, respectively at right before and after UVB exposure. It was estimated that 18 or 151 ng/$\textrm{cm}^2$ of ProD$_3$ was isomerized to PreD$_3$, L$_3$, T$_3$ and VD$_3$ when exposed to 0.204 or 0.409 mJ/$\textrm{cm}^2$, respective)y. Consequently it was shown that when double dose of UVB light was applied to irradiate the chick body, more but not double synthesis of VD$_3$ and its analogues was occured in leg skin of brolier chicks.

  • PDF