• Title/Summary/Keyword: Lipid Binding

Search Result 431, Processing Time 0.022 seconds

Dialysis Related Treatment to Increase Elimination of Toxic Agent (독성 물질 제거에 있어서 투석과 연관된 치료)

  • Kim, Heung-Soo;Shin, Gyu-Tae
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.1 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • Various forms of dialytic techniques are available for detoxification. Hemodialysis, hemoperfusion and hemofiltration (hemodialfiltration) are the main treatment modalities. Because these modalities are rather invasive and expensive, it must be decided in balance of the risk and benefit to the patient. The prime consideration in the decision is based on the clinical features of poisoning; hemodialysis or hemoperfusion should be considered in general if the patient's condition progressively deteriorates despite intensive supportive therapy. The hemodialysis technique relies on passage of the toxic agent through a semipermeable membrane so that it can equilibrate with the dialysate and subsequently removed. It needs a blood pump to pass blood next to a dialysis membrane, which allows agents permeable to the membrane to pass through and reach equilibrium. Solute (or drug) removal by dialysis has numerous determinants such as solute size, its lipid solubility, the degree to which it is protein bound, its volume of distribution etc. The technique of hemoperfusion is similar to hemodialysis except there is no dialysis membrane or dialysate involved in the procedure. The patient's blood is pumped through a perfusion cartridge, where it is in direct contact with adsorptive material (usually activated charcoal) that has a coating material such as cellulose. This method can be used successfully with lipid-soluble compounds and with higher-molecular-weight compounds than for hemodialysis. Protein binding does not significantly interfere with removal by hemoperfusion. In conclusion, hemodialysis, hemoperfusion and hemofiltration can be used effectively as adjuncts to the management of severely intoxicated patients.

  • PDF

Effects of Compounds from Physalis angulata on Fatty Acid Synthesis and Glucose Metabolism in HepG2 Cells via the AMP-activated Protein Kinase Pathway

  • Hoa, Hoang Thai;Thu, Nguyen Thi;Dong, Nguyen Thuong;Oanh, Tran Thi;Hien, Tran Thi;Ha, Do Thi
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 - 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 ㎍/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 - 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 - 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.

Superoxide Dismutase Isoenzyme Activities in Plasma and Tissues of Iraqi Patients with Breast Cancer

  • Hasan, Hathama Razooki;Mathkor, Thikra Hasan;Al-Habal, Mohammed Hasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2571-2576
    • /
    • 2012
  • Breast cancer is the first of the most common ten cancers in Iraq. Its etiology is multifactorial, oxidative stress and lipid peroxidation being suggested to play important roles in carcinogenesis. The purpose of this study was to investigate the oxidant-antioxidant status in breast cancer patients, by measuring SOD isoenzyme activities (total SOD, CuZn-SOD, Mn-SOD and EC-SOD) in plasma and breast tumors, and by estimating thiobarbituric reactive substances (TBRS) in tissue homogenates. General increase in total SOD activity was observed in plasma and tissue samples of breast tumors, greater in the malignant when compared to benign group (p<0.05). Mn-SOD showed a significant decrease in tissue malignant samples (p<0.05), and insignificant decrease in plasma malignant samples compared with control and benign samples. Plasma EC-SOD activity in both patient benign and malignant breast tumors demonstrated 3.5% and 22.8% increase, respectively. However, there was a decrease in tissue EC-SOD activity in malignant breast tumors when compared with benign. A similar tendency was noted for TBRS. We suggest that elevated total SOD might reflect a response to oxidative stress, and then may predict a state of excess reactive oxygen species in the carcinogenesis process. If there is proteolytic removal of the heparin binding domain, EC-SOD will lose its affinity for the extracellular matrix and diffuse out of the tissue. This will result in a decreased EC-SOD activity, thus leading to an increase in the steady-state concentration of $O^{2-}$ in this domain, and increase in EC-SOD activity in the extracellular fluid. This might explain the results recorded here concerning the decrease in tissue EC-SOD activity and increase in plasma of breast cancer patients.

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

Effects of Taeumjowe-tang-gagambang on the Glycometabolism and Lipidmetabolism in the Liver Tissue of Diet-induced Obesity Mice (비만 유도 흰쥐 간조직에서 태음조위탕(太陰調胃湯) 가감방(加減方)이 당과 지질대사에 미치는 영향)

  • Hsiao, Mei Hui;Ko, Seong-Gyu;Jun, Chan-Yong;Park, Jong-Hyeong;Choi, You-Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.638-645
    • /
    • 2010
  • The aim of this study was to investigate the effect of Taeeumjowuitanggagam-bang (TJV) on the mRNA expression of Sterol regulatory element binding proteins (SREBPs), Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and Interlukin-6 (IL-6) that are considered to play an important role in lipid and glucose metabolism. For diet-induced obese studies, we split mice into 2 groups. The low fat diet group (LFD, n=8) were supplied with general diet for 10 weeks and the high fat diet group (HFD, n=18) were supplied with 60 kcal% fat diet for 10 weeks. And then The HFD group, the diet-induced obese group, were divided into 3 groups ; a group supplied with normal saline, a group treated with TJV 200 mg/kg and a group treated with TJV 500 mg/kg. They were treated orally with TJV and measured their body weight every day during 10 weeks. After that, we measured mRNA expressions of TNF-$\alpha$, IL-6 and SREBP-1c in liver, and blood concentrations of glucose, total cholesterol and triglyceride too. The results are as follows. The TJV reduced glucose and total cholesterol of blood concentration. The TJV reduced the mRNA expressions of TNF-$\alpha$ and SREBPs in liver. However, We couldn't find the TJV effects on the mRNA expression of IL-6, triglyceride blood concentration, and body weight among groups. The TJV stained liver tissue less red than control group. These results suggest that TJV may be effective for regulation of lipid and glucose metabolism in liver.

Changes in Physico-chemical Properties of Potato Starch by Microwave Heating Methods (마이크로파 가열방법에 따른 감자전분의 이화학적 특성변화)

  • Choi, Ock-Ja;Koh, Moo-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.461-467
    • /
    • 1993
  • The purpose of this study was to investigate the physico-chemical properties of potato starch heated with microwave. Two types of potato starches are prepared; in group A raw potato starch was heated with microwave and in group B potato starch was isolated from potato heated with microwave. Both groups were exposed to the microwave energy in a 560 W, 2,450 MHz oven for 60, 120, 180 and 300 seconds. As the microwave heating time took longer, free lipid decreased and bound lipid increased in both groups. The shape of starch granules, birefrigence and X-ray diffraction pattern were not changed much by microwave heating in both groups. Water binding capacity increased, but amylose content, swelling power and solubility decreased as the microwave heating time took longer. It was also found that the extent of decreases in swelling power and solubility were different between group A and group B.

  • PDF

Differential Scanning Calorimetric Study of Amylose-lipid Complex and Amylose Content in Rice Starch (쌀 전분의 Amylose-lipid Complex 의 DSC 특성과 Amylose 정량)

  • Ko, Jae-Hyung;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.556-561
    • /
    • 1989
  • Thermal properties of amylose-lysolecithin (AL) complex, amylose content and effect of lysolecithin on the gelatinization of rice starch were investigated by Differential Scanning Calorimetry (DSC). The melting temperature of AL complex was near to $108.5^{\circ}C$ and the melting enthalpy was about 1.0cal/g. The gelatinization temperature of rice starch was not affected by adding lysolecithin. However, the enthalpy of gelatinization was decreased. The amylose contents in rice varieties were calculated from melting enthalpy of AL complex. The amylose contents for Indica and Japonica types of rice were in the range of 16-19%, which were in good agreement with those determined by iodine binding method. Significant differences were not observed in the amylose contents between Indica and Japonica varieties.

  • PDF

Carcass traits, fatty acid composition, gene expression, oxidative stability and quality attributes of different muscles in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves and their combination

  • Odhaib, Kifah Jumaah;Adeyemi, Kazeem Dauda;Sazili, Awis Qurni
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1345-1357
    • /
    • 2018
  • Objective: This study examined the influence of dietary supplementation of Nigella sativa seeds, Rosmarinus officinalis leaves and their combination on carcass attributes, fatty acid (FA) composition, gene expression, lipid oxidation and physicochemical properties of longissimus dorsi (LD), semitendinosus (ST), and supraspinatus (SS) muscles in Dorper lambs. Methods: Twenty-four Dorper lambs ($18.68{\pm}0.6kg$, 4 to 5 months old) were randomly assigned to a concentrate mixture containing either, no supplement (control, T1), 1% Rosmarinus officinalis leaves (T2), 1% Nigella sativa seeds (T3), or 1% Rosmarinus officinalis leaves+1% Nigella sativa seeds (T4) on a dry matter basis. The lambs were fed the treatments with urea-treated rice straw for 90 days, slaughtered and the muscles were subjected to a 7 d postmortem chill storage. Results: The T2 lambs had greater (p<0.05) slaughter and cold carcass weights than the control lambs. Dietary supplements did not affect (p>0.05) chill loss, dressing percentage, carcass composition, intramuscular fat and muscle pH in Dorper lambs. Meat from supplemented lambs had lower (p<0.05) cooking and drip losses, shear force, lightness, and lipid oxidation and greater (p<0.05) redness compared with the control meat. The impact of dietary supplements on muscle FA varied with muscle type. Diet had no effect (p>0.05) on the expression of stearoyl-CoA desaturase and lipoprotein lipase genes in LD and ST muscles in Dorper lambs. The T2 and T3 diets up regulated the expression of AMP-activated protein kinase alpha 2 gene in LD and ST muscles and up regulated the expression of sterol regulatory element-binding protein 1 in ST muscle in Dorper lambs. Conclusion: Dietary supplementation of Nigella sativa seeds and Rosmarinus officinalis leaves had beneficial effects on meat quality in Dorper lambs.

Ginseng Leaf Extract Prevents High Fat Diet-Induced Hyperglycemia and Hyperlipidemia through AMPK Activation

  • Yuan, Hai-Dan;Kim, Sung-Jip;Quan, Hai-Yan;Huang, Bo;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • This study evaluated the protective effects of ginseng leaf extract (GLE) against high fat-diet-induced hyperglycemia and hyperlipidemia, and explored the potential mechanism underlying these effects in C57BL/6J mice. The mice were randomly divided into four groups: normal control, high fat diet control (HFD), GLE-treated at 250 mg/kg, and GLE-treated at 500 mg/kg. To induce hyperglycemic and hyperlipidemic states, mice were fed a high fat diet for 6 weeks and then administered GLE once daily for 8 weeks. At the end of the treatment, we examined the effects of GLE on plasma glucose, lipid levels, and the expression of genes related to lipogenesis, lipolysis, and gluconeogenesis. Both GLE groups lowered levels of plasma glucose, insulin, triglycerides, total cholesterol, and non-esterified fatty acids when compared to those in HFD group. Histological analysis revealed significantly fewer lipid droplets in the livers of GLE-treated mice compared with HFD mice. To elucidate the mechanism, Western blots and RT-PCR were performed using liver tissue. Compared with HFD mice, GLE-treated mice showed higher levels of phosphorylation of AMP-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase, but no differences in the expression of lipogenic genes such as sterol regulatory element-binding protein 1a, fatty acid synthase, sterol-CoA desaturase 1 and glycerol-3-phosphate acyltransferase. However, the expression levels of lipolysis and fatty acid uptake genes such as peroxisome proliferator-activated receptor-$\alpha$ and CD36 were increased. In addition, phosphoenolpyruvate carboxykinase gene expression was decreased. These results suggest that GLE ameliorates hyperglycemia and hyperlipidemia by inhibiting gluconeogenesis and stimulating lipolysis, respectively, via AMPK activation.

Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease

  • Hwang, Jin-Taek;Shin, Eun Ju;Chung, Min-Yu;Park, Jae Ho;Chung, Sangwon;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.110-117
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. MATERIALS/METHODS: The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. RESULTS: EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. CONCLUSIONS: Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.