• Title/Summary/Keyword: Lipid Binding

Search Result 426, Processing Time 0.026 seconds

Sterol regulatory element-binding proteins involved in reprogramming of lipid droplet formation after rotavirus infection

  • Naveed, Ahsan;Baek, Yeong-Bin;Soliman, Mahmoud;Sharif, Muhammad;Park, Sang-Ik;Kang, Mun-Il
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.195-207
    • /
    • 2021
  • Species A rotaviruses (RVAs) replicate and assemble their immature particles within electron dense compartments known as viroplasms, where lipid droplets (LDs) interact with the viroplasm and facilitate viral replication. Despite the importance of LD formation in the life cycle of RVAs, the upstream molecules modulating LD formation remain unclear. This study aimed to find out the role of sterol regulatory element-binding proteins (SREBPs) in reprogramming of LD formation after RVA infection. Here, we demonstrate that RVA infection reprograms the sterol regulatory element-binding proteins (SREBPs)-dependent lipogenic pathways in virus-infected cells, and that both SREBP-1 and -2 transactivated genes, which are involved in fatty acid and cholesterol biosynthesis, are essential for LD formation. Our results showed that pharmacological inhibition of SREBPs using AM580 and betulin and inhibition of their downstream cholesterol biosynthesis (simvastatin for HMG-CoA reductase) and fatty acid enzymes (TOFA) negatively modulated the intracellular triacylglycerides and cholesterol levels and their resulting LD and viroplasm formations. Interestingly, pharmacological inhibition of SREBPs significantly reduced RVA protein synthesis, genome replication and progeny production. This study identified SREBPs-mediated lipogenic reprogramming in RVA-infected host cells, which facilitates virus replication through LD formation and its interaction with viroplasms, suggesting that SREBPs can be a potential target for the development of efficient and affordable therapeutics against RVA infection.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Suppression of Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes by a Standardized Commercial Juknyeok (죽력의 3T3-L1 지방전구세포에서 지방축적 억제 효과)

  • Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.1
    • /
    • pp.38-46
    • /
    • 2022
  • Objectives: Juknyeok (JN) is natural liquor extracted from bamboo stems (Phyllostachys bambusoides) and has been used as a traditional Korean medicine for improving vascular function, blood glucose, and treating stroke. Until now, the JN's lipid-lowering effect and underlying mechanism in adipocytes are poorly understood. The aim of this study was to scrutinize the effect of a standardized commercial JN on lipid accumulation during the differentiation of 3T3-L1 preadipocytes. Methods: Lipid and triglyceride (TG) accumulation in differentiating 3T3-L1 preadipocytes were measured by Oil Red O staining and AdipoRed assay, respectively. Cell count analysis was used to ascertain 3T3-L1 cytotoxicity. Immunoblotting and Reverse transcription polymerase chain reaction analysis were used to assess protein and messenger RNA (mRNA) expression levels in 3T3-L1 cells, respectively. Results: Treatment with JN at 25 𝜇l/ml after pH calibration with 6.35 significantly reduced lipid and TG accumulation in differentiating 3T3-L1 preadipocytes without significant cytotoxicity. On mechanistic levels, JN markedly suppressed protein expression levels of CCAAT/enhancer-binding protein (C/EBP)-𝛽 and fatty acid synthase (FAS) during the differentiation of 3T3-L1 preadipocytes. However, JN did not affect the protein expression levels of C/EBP-𝛼, peroxisome proliferator-activated receptor-𝛽/𝛾, and phosphorylation levels of signal transducer and activator of transcription-3/5 in differentiating 3T3-L1 preadipocytes. JN also reduced leptin mRNA expression levels in differentiating 3T3-L1 preadipocytes. Conclusions: JN at 25 𝜇l/ml lowers lipid accumulation and TG content in differentiating 3T3-L1 cells, mediated through the reduced expression levels of C/EBP-𝛽 and FAS.

Mutant and Its Functional Revertant Signal Peptides of Escherichia coli Ribose Binding Protein Show the Differences in the Interaction with Lipid Bilayer

  • Oh, Doo-Byoung;Taeho Ahn;Kim, Hyoung-Man
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.43-43
    • /
    • 1999
  • Signal peptides of secretary proteins interact with various membranes and non-membrane components during the translocation. We investigated the interaction of signal peptides of ribose binding protein (RBP) with Escherichia coli (E.coli) signal recognition particle (SRP), SecA and lipid bilayer. Previous studies showed that the functional signal peptides inhibit the GTPase activity of E.coli SRP which consisted of F로 and 4.5S RNA.(omitted)

  • PDF

Effect of saltss on the entrapment of calf thymus DNA into liposomes

  • Kim, Chong-Kook;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 1987
  • To correlate the conformational changes of DNA (Calf Thymus) with entrapment of DNA into liposomes, the effect of ions ($Na^+$, $Mg^{++}$on the entrapment of calf thymus DNA into liposomes was investigated. The effect of divalent ion ($Mg^{++}$ on the structural changes of DNA indicated by decrease of observed ellipticity at 274 nm and nonspecific binding of DNA to lipid bilayers was greater than monovalent ion ($\Na^+$). But the efficiency of DNA encapsulated was not altered. These results show that entrapment of DNA into liposomes is not due to nonspecific binding and structural changes because of electrostatic forces but to mechanical capture of DNA by the internal aqueous space of liposomes although divalent ion contributes large structural changes and more nonspecific association of DNA with liposomes due to strong charges.

  • PDF

Monoacylglycerol O-acyltransferase 1 (MGAT1) localizes to the ER and lipid droplets promoting triacylglycerol synthesis

  • Lee, Yoo Jeong;Kim, Jae-woo
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.367-372
    • /
    • 2017
  • Monoacylglycerol acyltransferase 1 (MGAT) is a microsomal enzyme that catalyzes the synthesis of diacylglycerol (DAG) and triacylglycerol (TAG). However, the subcellular localization and catalytic function domain of this enzyme is poorly understood. In this report, we identified that murine MGAT1 localizes to the endoplasmic reticulum (ER) under normal conditions, whereas MGAT1 co-localize to the lipid droplets (LD) under conditions of enriching fatty acids, contributing to TAG synthesis and LD expansion. For the enzyme activity, both the N-terminal transmembrane domain and catalytic HPHG motif are required. We also show that the transmembrane domain of MGAT1 consists of two hydrophobic regions in the N-terminus, and the consensus sequence FLXLXXXn, a putative neutral lipid-binding domain, exists in the first transmembrane domain. Finally, MGAT1 interacts with DGAT2, which serves to synergistically increase the TAG biosynthesis and LD expansion, leading to enhancement of lipid accumulation in the liver and fat.

Dietary ε-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

  • Hosomi, Ryota;Yamamoto, Daiki;Otsuka, Ren;Nishiyama, Toshimasa;Yoshida, Munehiro;Fukunaga, Kenji
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • ${\varepsilon}$-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or L-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis.

Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes

  • Lee, Chae Myoung;Yoon, Mi Sook;Kim, Young Chul
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.191-201
    • /
    • 2015
  • We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at $1,000{\mu}g/mL$ was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or $500{\mu}g/mL$ PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and $500{\mu}g/mL$ PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor ${\gamma}$ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein ${\beta}$ and ${\alpha}$ mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells.

Crude Extract and Solvent-Partitioned Fractions of the Halophyte Atriplex gmelinii Inhibit Adipogenesis in 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에서 염생식물 Atriplex gmelinii의 조추출물과 용매 분획물의 지방세포분화 억제)

  • Jung Im Lee;Jung Hwan Oh;Chang-Suk Kong;Youngwan Seo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.69-77
    • /
    • 2023
  • Objectives: Atriplex gmelinii C. A. Meyer is a halophyte belonging to the Chenopodiaceae family, and its young leaves and stems are used as fodder for livestock. The aim of the present study was to investigate the effects of A. gmelinii extract and its solvent fractions on lipid accumulation during adipogenesis of 3T3-L1 preadipocytes. Methods: The samples of A. gmelinii were separately extracted using methylene chloride and methanol. Subsequently, they were combined to formulate the initial extract, which was then partitioned based on polarity to prepare solvent fractions. Oil Red O staining was employed to measure lipid accumulation during the differentiation of 3T3-L1 preadipocytes. To verify cytotoxicity in 3T3-L1 cells, MTT assays were conducted. The expression levels of transcription factors in 3T3-L1 preadipocytes were measured through Western blotting analysis. Results: At 50 ㎍/mL, treatment of A. gmelinii extract and its solvent fractions during the differentiation of 3T3-L1 preadipocytes significantly diminished lipid accumulation with no noteworthy cytotoxicity on cell viability. Additionally, when investigating the biochemical pathways that underlie the prevention of lipid accumulation using solvent fractions, it was found that the n-BuOH and n-hexane fractions significantly decreased the expression of key transcription factors involved in the generation of fat, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP1c). Conclusions: These findings indicate that A. gmelinii can effectively reduce the accumulation of fat in 3T3-L1 adipocytes, making it a potentially valuable material for mitigating and preventing obesity.

The Lipid Efflux Effects of Dichloromethane Extract from Orostachys japonicus in 3T3-L1 Adipocyte Cells (3T3-L1 지방세포에 대한 와송 디클로로메탄 추출물의 지질 대사 개선에 관한 연구)

  • Kim, Soo-Hwan;Lee, Hyeong-Seon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.514-520
    • /
    • 2019
  • This study investigated the improved lipid metabolism effect of 3T3-L1 cells induced by adipocytes using the dichloromethane (DCM) fraction in the organic solvent extract of Wassong (Orostachys japonicus). To confirm the cell cytotoxicity, each of 6 fractions of organic solvent extracts (EtOH, Hexane, DCM, EtOAc, BuOH, and H2O) was examined using MTS assay. As a result, it was confirmed that the DCM extract was stable over the whole range of concentrations, and a DCM fraction was used to confirm the improved lipid metabolism effect. Lipid excretion was measured to confirm the change of lipid metabolism. 3T3-L1 cells induced by adipocytes were treated with DCM extract and stained with oil-red O to evaluate lipid accumulation. As a result, it was confirmed that the lipid efflux was significantly improved. In order to confirm the mechanism of lipid efflux, the mRNA expressions of ABCA1 and ABCG1, which are lipid transport proteins, were confirmed by real-time PCR. Therefore, the present study confirmed that the DCM extract from Orostachys japonicus has the effect of improving the lipid metabolism on 3T3-L1 adipocytes. In addition, the results of this study will be used as the basis for the development of functional foods using Orostachys japonicus and also for conducting research on the detailed mechanisms.