본 논문은 시멘틱 웹의 실제적인 구현 결과인 개방형 연결 데이터(Linked Open Data(LOD)) 클라우드에서의 연결성을 확충하는 방안을 제시하였다. 현재의 LOD 클라우드는 최초 기대와는 달리 LOD들간의 연결성 부족으로 인하여 활발한 활용을 이끌어 내지 못하고 있다. 를 적용한 명시적연결들을 LOD에 직접 첨부하여 공개하는 현재의 연결방식은 연결대상 LOD들의 변경상황을 실시간으로 검색결과에 반영하지 못하며 별도의 작업을 통하여 이러한 명시적연결들을 생성하고 주기적으로 갱신하여야 한다는 제약을 가진다. 이에 본 논문은 명시적연결들을 첨부하는 대신 LOD마다 연결정책을 마련하고 이를 LOD와 함께 공개하는 방안을 제안하였다. 연결정책에는 타겟LOD들을 선정하고 연결판단에 필요한 술어 쌍들과 유사도를 명세하도록 하였다. 이러한 연결정책에 기반하여 여러 LOD들에 거쳐 진행하는 심층검색 기능을 API로 구현하고 이를 Github를 통하여 공개하였다. 구현한 심층검색을 유사도 1.0~0.8, 깊이 4까지에서 실험한 결과 신뢰적인 연결들을 91%~98% 수준으로 포함하고 170% 정도 규모의 적정한 확장성을 제공하는 것으로 평가되었다.
급격하게 성장하고 있는 오픈 리소스인 링크드 데이터는 최근 선진국 정부의 많은 관심 속에 데이터 공개 및 상호운용성 확보를 위한 방안으로 주목받고 있다. 그러나 신뢰할 수 있는 개체 식별 기술의 부재로 링크드 데이터의 양적 성장에 비해 개체 수 대비 링크의 수가 적은 현상과 일부 데이터 셋에 링크가 집중되는 현상을 보이고 있다. 본 연구에서는 이러한 링크드 데이터의 문제를 해결하기 위해 개체 간 관계(owl:sameAs, owl differentFrom 등)를 이용하거나 Curation 방식을 사용하는 기존 링크드 데이터 기반 개체 식별 방식의 문제를 다중 온톨로지의 개체 식별이 가능한 자동화된 개체 식별 방식을 통해 개선하고 저자 개체의 대응 속성과 개체 유형의 논리적 특성을 활용하여 개체 식별 정합성을 검증할 수 있는 다중 온톨로지 기반의 실시간 저자 식별 방법을 제안하고 평가한다. 본인의 확인을 거친 29명의 저자 정보를 이용해 개체 식별 정확성 결과를 평가하여 평균 0.8533 (K measure)의 긍정적인 성능을 보였다.
Kim, Tae Jung;Lee, Ji Sung;Kim, Ji-Woo;Oh, Mi Sun;Mo, Heejung;Lee, Chan-Hyuk;Jeong, Han-Young;Jung, Keun-Hwa;Lim, Jae-Sung;Ko, Sang-Bae;Yu, Kyung-Ho;Lee, Byung-Chul;Yoon, Byung-Woo
Journal of Korean Medical Science
/
제33권53호
/
pp.343.1-343.8
/
2018
Background: Linkage of public healthcare data is useful in stroke research because patients may visit different sectors of the health system before, during, and after stroke. Therefore, we aimed to establish high-quality big data on stroke in Korea by linking acute stroke registry and national health claim databases. Methods: Acute stroke patients (n = 65,311) with claim data suitable for linkage were included in the Clinical Research Center for Stroke (CRCS) registry during 2006-2014. We linked the CRCS registry with national health claim databases in the Health Insurance Review and Assessment Service (HIRA). Linkage was performed using 6 common variables: birth date, gender, provider identification, receiving year and number, and statement serial number in the benefit claim statement. For matched records, linkage accuracy was evaluated using differences between hospital visiting date in the CRCS registry and the commencement date for health insurance care in HIRA. Results: Of 65,311 CRCS cases, 64,634 were matched to HIRA cases (match rate, 99.0%). The proportion of true matches was 94.4% (n = 61,017) in the matched data. Among true matches (mean age 66.4 years; men 58.4%), the median National Institutes of Health Stroke Scale score was 3 (interquartile range 1-7). When comparing baseline characteristics between true matches and false matches, no substantial difference was observed for any variable. Conclusion: We could establish big data on stroke by linking CRCS registry and HIRA records, using claims data without personal identifiers. We plan to conduct national stroke research and improve stroke care using the linked big database.
본 연구의 목적은 BNC 어휘목록과 2015 교육부 기본 어휘를 중심으로 EBS 연계교재와 대학 수능시험의 어휘를 분석하고자 한다. 어휘점유율과 빈도를 분석하기 위해서 AntWordProfiler 어휘 분석프로그램이 사용되었다. 결과를 보면, 2020 EBS 수능 영어 듣기와 읽기 연계 교재는 각각 BNC 3,000 단어와 4,000 단어를 가지고 약 95%를 이해할 수 있다는 것을 보여준다. 그러나 EBS 듣기와 읽기 교재의 98%의 단어를 이해하기 위해서는 각각 4,000과 8,000 단어가 필요하다는 것을 알 수 있다. 다른 한편으로 2020 수능영어시험 듣기와 읽기의 95%를 이해하기위해서는 각각 2,000과 4,000 단어가 요구되며, 98%의 경우에는 추가적으로 4,000과 7,000의 단어가 필요하다. 결과적으로 EBS 연계교재가 대입수능영어시험보다 더 많은 어휘의 양을 요구한다는 것을 알 수 있다.
Purpose: This study aimed to explore nursing students' experience with community-linked nursing education programs. Methods: This study utilized a qualitative content analysis. Participants were 55 sophomore nursing students. The community-linked nursing education program was conducted for eight weeks using the Analysis, Design, Development, Implementation, Evolution (ADDIE) model. Data were collected from 55 reflection records and five individual interviews and then analyzed through the three steps of qualitative content analysis, coding, condensing, and categorizing. Results: Twelve categories, 26 subcategories, and six topics emerged. The themes of impression and lesson from the community-linked nursing education programs were "recognizing the importance of professional competence in performing the role of nurse," "recognizing the need for leadership and cooperation in nursing practice," and "increased awareness of the role as a nursing professional for community residents." The themes of the strategies used were "looking at the goal and moving forward," and "aligning differences and working together with team/community members." The theme of strategies for the advancement of community-linked nursing education programs was "establishing a sustainable student-participating community-linked education program." Conclusion: The community-linked nursing education programs made students aware of the necessary competencies as professionals. In particular, they gave them hope for their role as professional nurses in the community. It could also be seen that they developed the ability to engage in team activities for community activities. Community-linked nursing education programs will need to be developed into continuous programs with community residents.
International Journal of Fuzzy Logic and Intelligent Systems
/
제4권3호
/
pp.337-340
/
2004
The clustering problem can be formulated as the problem to find the number of clusters and a partition matrix from a given data set using the iterative or non-iterative algorithms. The author proposes a nearest neighbor and validity-based clustering algorithm where each data point in the data set is linked with the nearest neighbor data point to form initial clusters and then a cluster in the initial clusters is linked with the nearest neighbor cluster to form a new cluster. The linking between clusters is continued until no more linking is possible. An optimal set of clusters is identified by using the conventional cluster validity index. Experimental results on well-known data sets are provided to show the effectiveness of the proposed clustering algorithm.
본 논문은 대도시에서의 COVID-19 바이러스 확산을 막기 위해, 대한민국 서울의 감염 상황에 대한 클러스터 분석을 통한 링크드 데이터 기반 시맨틱 진단 및 추적 시스템을 제안한다. 본 논문은 크게 3개의 섹션으로 구성되어 있는데, 클러스터 분석을 위해 서울의 감염자 정보를 수집하고, 중요한 감염 환자 속성을 추출하여 랜덤 포레스트를 기반으로 한 진단 모델을 구축하고, 그리고 링크드 데이터를 기반으로 한 추적 시스템을 설계하고 구현한다. 실험 결과 진단 모델의 정확도가 80% 이상으로 나타났으며, 더군다나 본 논문에서 제안한 추적 시스템은 기존 시스템들보다 더 유연하고 개방적이며 시맨틱 쿼리도 지원한다.
과학기술의 지식화 매체로서 가장 대표적인 것이 학술지라 할 수 있다. 그런데, 대부분의 정보가 문자 위주로 서비스되고 있어서, 연구자들이 검색 결과를 하나하나 확인해야 하기 때문에 연구 내용 파악에 많은 시간이 소요된다. 학술정보의 경우도 시각화한다면 원하는 정보를 보다 직관적이고 효과적으로 찾을 수 있을 것이다. 본 논문에서는 학술지 모델과 논문기사 모델을 제시하고, 각 정보 항목에 적합한 시각화 방법을 활용해서 시각화를 수행하였고, LOD(Linked Open Data) 인터링킹(Inter-linking)을 통해서 태그클라우드 상의 단어의 의미를 해설해주는 서비스도 개발 하였다.
생강전분의 몇 가지 물리화학적 성질을 옥수수 가교 전분과 비교 검토하였다. 생강전분은 아밀로스 함량이 23.5%, 물결합 능력이 99.1%이었고 B형의 X-ray 회절도를 보였다. 생강 전분의 광투과도는 $70^{\circ}C$ 이후에 증가하였고 옥수수 가교 전분의 swelling power와 용해도는 $90^{\circ}C$까지 아주 낮은 값을 보였으며, 알카리에 대하여도 안정하였다. 아밀로그라피에 의한 생강전분 (7%)의 초기 호화온도는 $81.5^{\circ}C$ 이었고, 옥수수 가교전분과 같이 안정한 Paste를 보였다.
스마트 미디어 장치의 발달로 인하여 시공간적인 제약이 없이 비디오를 시청 가능한 환경이 제공됨에 따라 사용자의 시청행태가 수동적인 시청에서 능동적인 시청으로 계속해서 변화하고 있다. 사용자는 비디오를 시청하면서 비디오를 볼 뿐 아니라 관심 있는 내용에 대한 세부적인 정보를 검색한다. 그 결과 사용자와 미디어 장치간의 인터랙션이 주요 관심사로 등장하였다. 이러한 환경에서 사용자들은 일방적으로 정보를 제공해주는 것보다는 자신이 원하는 정보를 웹 검색을 통해 사용자 스스로 정보를 찾지 않고, 쉽고 빠르게 정보를 얻을 수 있는 방법의 필요성을 인식하게 되었으며 그에 따라 인터랙션을 직접 수행하는 것에 대한 요구가 증가하였다. 또한 많은 정보의 홍수 속에서 정확한 정보를 얻는 것이 중요한 이슈가 되었다. 이러한 사용자들의 요구사항을 만족시키기 위해 사용자 인터랙션 기능을 제공하고, 링크드 데이터를 적용한 시스템이 필요한 상황이다. 본 논문에서는 여러 분야 중에서 사람들이 가장 관심 있는 분야중 하나인 요리를 선택하여 문제점을 발견하고 개선하기 위한 방안을 살펴보았다. 요리는 사람들이 지속적인 관심을 갖는 분야이다. 레시피, 비디오, 텍스트와 같은 요리에 관련된 정보들이 끊임없이 증가하여 빅 데이터의 한 부분으로 발전하였지만 사용자와 요리 콘텐츠간의 인터랙션을 제공하는 방법과 기능이 부족하고, 정보가 부정확하다는 문제점을 가지고 있다. 사용자들은 쉽게 요리 비디오를 시청할 수 있지만 비디오는 단 방향으로만 정보를 제공하기 때문에 사용자들의 요구사항을 충족시키기 어렵고, 검색을 통해 정확한 정보를 얻는 것이 어렵다. 이러한 문제를 해결하기 위하여 본 논문에서는 요리 비디오 시청과 동시에 정보제공을 위한 UI(User Interface), UX(User Experience)를 통해 사용자의 편의성을 고려한 환경을 제시하고, 컨텍스트에 맞는 정확한 정보를 제공하기 위해 링크드 데이터를 이용하여 사용자와 비디오 간에 인터랙션을 위한 요리보조 서비스 시스템을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.