• Title/Summary/Keyword: Link force

Search Result 278, Processing Time 0.026 seconds

Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker (기중 차단기용 전자석 조작기 및 3절 링크 설계)

  • Kim, Rae-Eun;Kwak, Sang-Yeop;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.

Error Analysis of a Parallel Mechanism Considering Link Stiffness and Joint Clearances

  • Park, Woo-Chun;Song, Jae-Bok;Daehie Hong;Shim, Jae-Kyung;Lim, Seung-Reung;Kyungwoo Kang;Park, Sungchul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.799-809
    • /
    • 2002
  • In order to utilize a parallel mechanism as a machine tool component, it is important to estimate the errors of its end-effector due to the uncertainties in parts. This study proposes an error analysis for a new parallel device, a cubic parallel mechanism. For the parallel device, we consider two kinds of errors. One is a static error due to link stiffness and the other is a dynamic error due to clearances in the parts. In this study, we propose a stiffness model for the cubic parallel mechanism under the assumption that the link stiffness is a linear function of the link length. Also, from the fact that the errors of u-joints and spherical joints are changed with the direction of force acting on the link, they are regarded as a part of link errors, and then the error model is derived using forward kinematics. Lastly, both the error models are integrated into the total error, which is analyzed with a test example that the platform moves along a circular path. This analysis can be used in predicting the accuracy of other parallel devices.

Topology Design of Rigid-String Mechanism Using Constraint Force Design Method (구속조건 힘 설계기법을 이용한 강체와 스트링의 위상 최적설계)

  • Heo, Jae-Chung;Yoon, Gil-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.745-750
    • /
    • 2012
  • This study extends the constraint force design method allowing topology optimization for planar rigid-link and string mechanisms. To our best knowledge, by applying conventional machine and mechanism design theories, it is likely that it is possible to find out optimal locations of joints and lengths of rigid-links but somewhat difficult to find out optimal topology of rigid-links. To achieve optimal topology of rigid links, there is our previous contribution so called the new constraint force design method with the binary design variables determining the existence of the auxiliary forces imposing apparent lengths among unit masses. By adding new binary design variables, this research extends the constraint force design method to find out optimal mechanism consisting of stringy links as well as rigid links that seems impossible in the conventional machine and mechanism design theories.

Design of Calf Link Force Sensor of Walking Assist Robot of Leg Patients (편마비 다리환자를 위한 보행보조로봇의 발목 2축 힘센서 설계)

  • Choi, Chi-Hun;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • This paper describes the design and manufacture of a ankle two-axis force sensor of a walking assist robot for hemiplegic leg patient. The walking assist robot for the hemiplegic leg patient can safely control the robot by detecting whether the foot wearing the walking assist robot is in contact with the obstacle or not. To do so, a two-axis force sensor should be attached to the robot's ankle. The sensor is used to measure the force of a patient's ankle lower part. The two-axis force sensor is composed of a Fx force sensor, a Fy force sensor and a pulley, and they detect the x and y direction forces, respectively. The two-axis force sensor was designed using by FEM(Finite Element Method), and manufactured using by strain-gages. The characteristics experiment of the two-axis force sensor was carried out respectively. The test results indicated that the interference error of the two-axis force sensor was less than 1.2%, the repeatability error and the non-linearity of the two-axis force sensor was less than 0.04% respectively. Therefore, the fabricated two-axis force sensor can be used to measure the force of ankle lower part in the walking assist robot.

형상기억합금 스프링을 이용한 2방향 BENDING 액츄에이터의 제작

  • 김명순;이승기;이상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1071-1074
    • /
    • 1995
  • This paper proposes two directional bending actator using three link, two shape memory alloys(SMA) of coil-type springs and two guide wires. By the heating of two SMA springs sequentially, the bending and stretching of the actuator is possible. Bending angle, force and repeated bending motion of actuator were measured and characterized. The performance of the actuator has been characterized for the possible application for catheter.

  • PDF

Hybrid Position/Force Control of the Direct-Drive Robot Using Learning Controller (학습제어기를 이용한 직접구동형 로봇의 하이브리드 위치/힘 제어)

  • Hwang, Yong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.653-660
    • /
    • 2000
  • The automatization by industrial robot of today is merely rely on to the simple position repeating works, but requirements of research and development to the force control which would adapt positively to various restriction or contacting works to environment. In this paper, a learning control algorithm using, neural networks is proposed for the position and force control by a direct-drive robot. The proposed controller is the feedback controller to which the learning function of neural network is added on to and has a character of improving controller's efficiency by learning. The effectiveness of the proposed algorithm is demonstrated by the experiment on the hybrid position and force control of a parallelogram link robot with a force sensor.

Hybrid position/force control of flexible manipulators

  • Kim, Jin-Soo;Suzuki, Kuniaki;Konno, Atsushi;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.408-411
    • /
    • 1995
  • In this paper, we discuss the force control of flexible manipulators. Since the force control of flexible manipulators with planar one or two links using the distributed-parameter modeling has been the subject of a considerable number of publications until now, real time computations of the force control schemes are possible. But, application of those control schemes to multi-link spatial manipulators is fairly complicated. In this paper, we apply a concise hybrid position/force control scheme for a flexible manipulators. We use a lumped-parameter modeling for the flexible manipulators. The Hamilton's principle is applied to derive the equations of motion for the system and then, state-space model is obtained by the Lagrange's method. Finally, comparison of simulation results with experimental results is given to show the performance of our method.

  • PDF

Direct Control of a Passive Haptic Device Based on Passive Force Manipulability Ellipsoid Analysis

  • Changhyun Cho;Kim, Munsang;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.238-246
    • /
    • 2004
  • In displaying a virtual wall using a passive haptic device equipped with passive actuators such as electric brakes, unsmooth motion frequently occurs. This undesirable behavior is attributed to time delay due to slowness in the virtual environment update and force approximation due to the inability of a brake to generate torque in arbitrary directions. In this paper a new control scheme called direct control is proposed to achieve smooth display on the wall-following task with a passive haptic device. In direct control, brakes are controlled so that the normal component of a resultant force at the end-effector vanishes, based on the force analysis at the end-effector of the passive haptic device using the passive FME (Force Manipulability Ellipsoid). Various experiments have been conducted to verify the validity of the direct control scheme with a 2-link passive haptic system.

Biomechanical Analysis with the Force of Deltoid Muscle for Pianist

  • Shin, Dong-Ok;La, Seung-Houn
    • International Journal of Safety
    • /
    • v.4 no.1
    • /
    • pp.27-31
    • /
    • 2005
  • This study presents the relationship between the height of the chair and the force of deltoid muscle for pianist. The subject simulated playing the piano on the three different heights of the chairs. Digital camera was used to determine the angle of the joint of shoulder and elbow for 2-dimensional static link segment modeling in the sagittal plane. The deltoid, biceps and triceps muscles were considered to determine the muscle load. The results, compared to the force of deltoid muscle, are that the downward position of the higher chair produces significantly large force than the other two lower chairs. It can be caused by hunched shoulder with decreasing deltoid angle. In case of the upward position caused by the lower chair, even though the smallest force of deltoid presented, it was increased the force of elbow.

Judo-doll System Development for Enhancement of Judo's Performance (유도 경기력 향상을 위한 유도 인형시스템 개발)

  • Park, Kang;Shim, Cheol-Dong;Kim, Eui-Hwan;Kim, Sung-Sup;Kim, Tae-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.383-392
    • /
    • 2010
  • The purpose of this study is to develop three Judo-doll systems for enhancement of Judo's performance. Traditional Judo training requires a human training partner. Unfortunately it is not always easy to find one. Multifunctional Judo-doll training system has therefore been developed, and is described here. The system consists of a dummy, a power generating mechanism, and kinematic links. The power-generating mechanism generates forces similar to those of a human, by adjusting deadweights and controlling powderbrake's forces. The powderbrake force is controlled by the microprocessor according to the exercise scenario. The kinetic links, which mimic a human training partner's motions, has been developed based on a $Vicon^{TM}$ system's analysis of the movement of human training partners. This mechanism whose name is "L link-wire" consists of L type links, wire, roller, and dead weight. This mechanism generates the force that leads the link to the neutral position regardless the link is pushed or pulled. The lifting mechanism that lifts the doll when the one-armed shoulder throw skill is applied is also developed. A 32-bit microprocessor controls the whole system; it reads the loadcell data, controls the electromagnetic force, and communicates with a PC via Bluetooth. The training history, including loadcell data, date, and training time, is stored in the PC for analysis. This training system can be used to enhance the Judo performance of any self training player.