• Title/Summary/Keyword: Link Average Travel Time

Search Result 21, Processing Time 0.022 seconds

Estimation of Total Travel Time for a Year on National Highway Link with AADT (연평균 일일교통량을 이용한 일반국도구간 연간 총통행시간 추정 방법 개발)

  • Kim, Jeong Hyun;Suh, Sunduck;Kim, Taehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.11-16
    • /
    • 2009
  • The estimation of total travel time on highway link for a day or year is the most important process for the feasibility analysis of highway or railway. Most of current guidelines for feasibility studies have been based on the time-traffic volume relationship from the BPR, and the traffic volumes have been determined by the application of the design hour factor to the annual average daily traffic volume. Both of the BPR function and the application of the design hour volume may result in the over-estimation of travel time due to the fact that the traffic volume on the large portion of highway links in Korea are close to the capacities. This study proposed a new way which is based on the distribution of hourly volumes for a year. It could be closer to the real situation, and provide more reasonable estimation. This methodology was validated for the national highways, but may be applicable for any type of highway with the AADT.

Development of Travel Time Functions Considering Intersection Delay (교차로 지체를 고려한 통행시간함수 개발)

  • Oh, Sang-Jin;Park, Sang-Hyuk;Park, Byung-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.63-76
    • /
    • 2008
  • The goals of this study are to develop travel time functions based on intersection delay and to analyze the applicability of the functions to traffic assignment models. The study begins with the premise that the existing assignment models can not effectively account for intersection delay time. In pursuing the goals, this study gives particular attention to dividing the link travel time into link moving time and stopped time at node, making the models based on such variables as the travel speed, volume, geometry, and signal data of signalized intersections in Cheongju, and analyzing the applicability of these models to traffic assignment. There are several major findings. First, the study presents the revised percentage of lanes (considering type of intersection) instead of g/C for calculating intersection delay, which is analyzed to be significant in the paired t-test. Second, the assigned results of applying these models to the Cheongju network in EMME/2 are compared with the data observed from a test car survey in Cheongju. The analyses show that the BPR models do not consider the intersection delay, but the modified uniform delay model and modified Webster model are comparatively well fitted to the observed data. Finally, the assigned results of applying these models are statistically compared with the test car survey data in assigned volume, travel time, and average speed. The results show that the estimates from the divided travel time model are better fitted to observed data than those from the BPR model.

Multi-step Ahead Link Travel Time Prediction using Data Fusion (데이터융합기술을 활용한 다주기 통행시간예측에 관한 연구)

  • Lee, Young-Ihn;Kim, Sung-Hyun;Yoon, Ji-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.71-79
    • /
    • 2005
  • Existing arterial link travel time estimation methods relying on either aggregate point-based or individual section-based traffic data have their inherent limitations. This paper demonstrates the utility of data fusion for improving arterial link travel time estimation. If the data describe traffic conditions, an operator wants to know whether the situations are going better or worse. In addition, some traffic information providing strategies require predictions of what would be the values of traffic variables during the next time period. In such situations, it is necessary to use a prediction algorithm in order to extract the average trends in traffic data or make short-term predictions of the control variables. In this research. a multi-step ahead prediction algorithm using Data fusion was developed to predict a link travel time. The algorithm performance were tested in terms of performance measures such as MAE (Mean Absolute Error), MARE(mean absolute relative error), RMSE (Root Mean Square Error), EC(equality coefficient). The performance of the proposed algorithm was superior to the current one-step ahead prediction algorithm.

Development of Vehicle Queue Length Estimation Model Using Deep Learning (딥러닝을 활용한 차량대기길이 추정모형 개발)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Kim, Soo-Hee;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.39-57
    • /
    • 2018
  • The purpose of this study was to construct an artificial intelligence model that learns and estimates the relationship between vehicle queue length and link travel time in urban areas. The vehicle queue length estimation model is modeled by three models. First of all, classify whether vehicle queue is a link overflow and estimate the vehicle queue length in the link overflow and non-overflow situations. Deep learning model is implemented as Tensorflow. All models are based DNN structure, and network structure which shows minimum error after learning and testing is selected by diversifying hidden layer and node number. The accuracy of the vehicle queue link overflow classification model was 98%, and the error of the vehicle queue estimation model in case of non-overflow and overflow situation was less than 15% and less than 5%, respectively. The average error per link was about 12%. Compared with the detecting data-based method, the error was reduced by about 39%.

Fusion Strategy on Heterogeneous Information Sources for Improving the Accuracy of Real-Time Traffic Information (실시간 교통정보 정확도 향상을 위한 이질적 교통정보 융합 연구)

  • Kim, Jong-Jin;Chung, Younshik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • In recent, the number of real-time traffic information sources and providers has increased as increasing smartphone users and intelligent transportation system facilities installed at roadways including vehicle detection system (VDS), dedicated short-ranged communications (DSRC), and global positioning system (GPS) probe vehicle. The accuracy of such traffic information would vary with these heterogeneous information sources or spatiotemporal traffic conditions. Therefore, the purpose of this study is to propose an empirical strategy of heterogeneous information fusion to improve the accuracy of real-time traffic information. To carry out this purpose, travel speed data collection based on the floating car technique was conducted on 227 freeway links (or 892.2 km long) and 2,074 national highway links (or 937.0 km long). The average travel speed for 5 probe vehicles on a specific time period and a link was used as a ground truth measure to evaluate the accuracy of real-time heterogeneous traffic information for that time period and that link. From the statistical tests, it was found that the proposed fusion strategy improves the accuracy of real-time traffic information.

Development of Integrated Accessibility Measurement Algorithm for the Seoul Metropolitan Public Transportation System (서울 대도시권 대중교통체계의 통합 시간거리 접근성 산출 알고리즘 개발)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.1
    • /
    • pp.29-41
    • /
    • 2017
  • This study proposes an integrated accessibility measurement algorithm, which is applied to the Seoul Metropolitan public transportation system consisting of bus and subway networks, and analyzes the result. We construct a public transportation network graph linking bus-subway networks and take the time distance as the link weight in the graph. We develop a time-distance algorithm to measure the time distance between each pair of transit stations based on the T-card transaction database. The average travel time between nodes has been computed via the shortest-path algorithm applied to the time-distance matrix, which is obtained from the average speed of each transit route in the T-card transaction database. Here the walking time between nodes is also taken into account if walking is involved. The integrated time-distance accessibility of each node in the Seoul Metropolitan public transportation system has been computed from the T-card data of 2013. We make a comparison between the results and those of the bus system and of the subway system, and analyze the spatial patterns. This study is the first attempt to measure the integrated time-distance accessibility for the Seoul Metropolitan public transportation system consisting of 16,277 nodes with 600 bus routes and 16 subway lines.

A Traffic Simulation Model Verification Method Using GPS Equipment (GPS를 활용한 교통 시뮬레이션 모형 검증)

  • Hu, Hyejung;Baek, Jongdae;Han, Sangjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.62-69
    • /
    • 2012
  • Traffic simulation models have been used for assessing various transportation strategies. Through comparing results from a simulation model and real field data, researchers try to show how close the model can reproduce the real world traffic. This model verification step is one of the most essential tasks in modeling procedure. Traffic counts and speeds have been frequently used for the verification or validation. Authors modeled severe PM peak bottleneck situation on the I-40 corridor in Raleigh, North Carolina using DYNASMART-P, a mesoscopic traffic simulation tool and verified the model. NCDOT has Traffic Information Management System which has archive capability for the traffic speeds on the I-40 corridor. However, the authors selected travel time as the field measure for model verification and collected the data using a GPS equipment because the speed data from NCDOT speed detectors are spot speeds which are not appropriate for comparison with link average speed from the simulation model. This paper describes the GPS field data collection procedure, the model verification method, and the results.

Calculation of the Peak-hour Ratio for Road Traffic Volumes using a Hybrid Clustering Technique (혼합군집분석 기법을 이용한 도로 교통량의 첨두율 산정)

  • Kim, Hyung-Joo;Chang, Justin S.
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.19-30
    • /
    • 2012
  • The majority of daily travel demands concentrate at particular time-periods, which causes the difficulties in the travel demand analysis and the corresponding benefit estimation. Thus, it is necessary to consider time-specific traffic characteristics to yield more reliable results. Traditionally, na$\ddot{i}$ve, heuristic, and statistical approaches have been applied to address the peak-hour ratio. In this study, a hybrid clustering model which is one of the statistical methods is applied to calculate the peak-hour ratio and its duration. The 2009 national 24-hour traffic data provided by the Korea institute of Construction Technology are used. The analysis is conducted dividing vehicle types into passenger cars and trucks. For the verification for the usefulness of the methodology, the toll collection system data by the Korea Express Corporation are collected. The result of the research shows lower errors during the off-peak hours and night times and increasing error ratios as the travel distance increases. Since the method proposed can reduce the arbitrariness of analysts and can accommodate the statistical significance test, the model could be considered as a more robust and stable methodology. It is hoped that the result of this paper could contribute to the enhancement of the reliability for the travel demand analysis.

An Estimation of Link Travel Time by Using BMS Data (BMS 데이터를 활용한 링크단위 여행시간 산출방안에 관한 연구)

  • Jeon, Ok-Hee;Ahn, Gye-Hyeong;Hyun, Cheol-Seung;Hong, Kyung-Sik;Kim, Hyun-Ju;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.78-88
    • /
    • 2014
  • Now, UTIS collects and provides traffic information by building RSE 1,150(unit) and OBE about 51,000(vehicle). it's inevitable to enlarge traffic information sources which use to improve quality of UTIS traffic information for Stabilizing UTIS's service. but there are missing data sections. And, In this study as a way to overcome these problems, based on BIS(Bus information system) installed and operating in the capital area to develop normal vehicle's link transit time estimation model which is used realtime collecting BMS data, we'll utilize the model to provide missing data section's information. For these problem, we selected partial section of suwon-city, anyang-city followed by drive only way or not and conducted model estimating and verification each of BMS data and UTIS traffic information. Consequently, Case2,4,6,8 presented highly credibility between UTIS communication data and estimated value but In the Case 3,5 we determined to replace communication data of UTIS' missing data section too hard for large error. So we need to apply high credibility model formula adjusting road managing condition and the situation of object section.

The Development of A Dynamic Traffic Assignment Technique using the Cell Transmission Theory (Cell Transmission 이론을 이용한 동적통행배정기법 개발에 관한 연구)

  • 김주영;이승재;손의영
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.71-84
    • /
    • 1999
  • The purpose of this study is to construct a dynamic traffic analysis model using the existing traffic flow theory in order to develope a dynamic traffic assignment technique. In this study the dynamic traffic analysis model was constructed using Daganzo's CELL TRANSMISSION THEORY which was considered more suitable to dynamic traffic assignment than the other traffic flow theories. We developed newly the diverging split module, the cost update module and the link cost function and defined the maximum waiting time decision function that Daganzo haven't defined certainly at his Papers. The output that resulted from the simulation of the dynamic traffic analysis model with test network I and II was shown at some tables and figures, and the analysis of the bottleneck and the HOV lane theory showed realistic outputs. Especially, the result of traffic assignment using the model doesn't show equilibrium status every time slice but showed that the average travel cost of every path maintains similarly in every time slice. It is considered that this model can be used at the highway operation and the analysis of traffic characteristics at a diverging section and the analysis of the HOV lane effect.

  • PDF