• 제목/요약/키워드: Lining system

검색결과 242건 처리시간 0.029초

On Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Numerical Analysis (수치해석에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구)

  • 이대혁;김재순;이희근;김성운
    • Tunnel and Underground Space
    • /
    • 제8권2호
    • /
    • pp.146-156
    • /
    • 1998
  • Nemerical algorithms were developed to analyze the behavior of the double lining as well as ground mass separately or simultaneously. A lining interface element was especially developed, verified and applied to the study on the coupled interaction of shotcrete and the concrete lining. It could be known fro parameter studys on double lining support systems that as the contact surface between shotcrete and concrete lining was rougher, the more decreased bearing capacity against the cracking of the system. If the thickness of the shotcrete increased, the bearing capacity of the double lining also increased linearly with the thickness. If the thickness of the concrete lining increased, the bearing capacity of the double lining had the relationship of the characteristic S-shape of a sigmoid function with the thickness. When the thickness increased over a given value, it was not useful to increase more the thickness because bearing capacity had no remarkable change. It could be concluded that the behavior of the shotcrete and concrete lining was generally reversed before and after the ratio of horizontal to vertical earth preassure of 1.0 and 0.5 respectively. Therefore, we could guess that the movement which two shotcrete and concrete lining deflect toward each other around the crown caused a friction between two linings and thus this disadvantageous effect could contribute to reducing the bearing capacity against the cracking.

  • PDF

Development of optimized TBM segmental lining design system (TBM 세그먼트 라이닝 최적 설계 시스템 개발)

  • Woo, Seungjoo;Chung, Eunmok;Yoo, Chungsik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제18권1호
    • /
    • pp.13-30
    • /
    • 2016
  • This paper concerns the development of an optimized TBM segmental lining design system for a subsea tunnel. The subsea tunnel is normally laid down under the sea water and submarine ground which consists of soil or rock. The design system is the series of process which can predict segmental lining member forces by ANN (artificial neural network system), analyze suitable section for the designated ground, construction and tunnel conditions. Finally, this lining design system aims to be connected with a BIM system for designing the subsea tunnel automatically. The lining member forces are predicted based on the ANN which was calculated by a FEM (finite element analysis) and it helps designers determine its segmental lining dimension easily without any further FE calculations.

Development of an Expert System for Nondestructive Evaluation of Tunnel Lining (터널 라이닝의 비파괴 평가를 위한 전문가시스템 개발)

  • 김문겸;허택녕;이재영;김도훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.413-420
    • /
    • 1998
  • In this study, an expert system is developed to evaluate a safety of tunnel structures. Using a dynamic finite element analysis module, this expert system predicts dynamic responses of a concrete lining surface which a transient force is applied on and estimates the condition between the concrete lining and surrounding ground. The evaluation parameter values of the module are multi-reflected wave frequency and amplitude of the dynamic responses. The multi-reflected wave frequency represents the depth of concrete lining, and the other parameter, the amplitude of the frequency, is utilized for detecting the internal flaws. A comparison of the dynamic responses between numerical and experimental model test verifies an effectiveness of this system. By this expert system, the safety of tunnel structures and the detection of internal flaws of concrete linings are estimated quantitatively.

  • PDF

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

Cause Analysis for a Lining Damage in Sea Water System Piping Installed in a Korean Industrial Plant

  • Hwang, K.M.;Park, S.K.
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Many Korean industrial plants including nuclear and fossil power plants use seawater as the ultimate heat sink to cool the heat generated by various facilities. Owing to the high corrosivity of seawater, facilities and piping made of metal material in contact with seawater are coated or lined with polymeric materials to avoid direct contact with seawater. However, polymeric materials used as coating and lining have some level of permeability to water and are degraded over time. Korean industrial plants have also experienced a gradual increase in the frequency of damage to pipes in seawater systems due to prolonged operating periods. In the event of a cavitation-like phenomenon, coating or lining inside the piping is likely to be damaged faster than expected. In this paper, the cause of water leakage due to base metal damage caused by the failure of the polyester lining in seawater system piping was assessed and the experience with establishing countermeasures to prevent such damage was described.

Booming Noise Reduction of Passenger Cars by Mode Decoupling of Structural-Acoustic Systems (구조-음향 모드 비연성에 의한 차량의 부밍 소음 저감)

  • 고강호;이장무
    • Journal of KSNVE
    • /
    • 제9권4호
    • /
    • pp.822-827
    • /
    • 1999
  • The reduction of booming noise level and improvement of sound quality in the vehicle interior have been major fields of vehicle NVH for many years. In order to reduce the booming noise this paper proposed a system variable, which takes account of mode shapes and natural frequencies of the structural-acoustic system, measurement points and excitation frequency. By simplifying the system variable, the major contributors of panels inculding roof, roof lining, wind shield glasses, doors and floor to booming noise at a specific frequency was experimentally found. Also the relationships between structural modes of roof lining, one of the major contributors, and acoustic modes of compartment cavity were investigated from the viewpoint fo structure-borne noise. In addition, the roof lining was modified structurally by applying marble sponge to the gap between roof and roof lining. Asthe result of structural modification, the booming noise was reduce at target frequency.

  • PDF

Behavior of double lining due to long-term hydraulic deterioration of drainage system

  • Shin, Jong-Ho;Lee, In-Keun;Joo, Eun-Jung
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1257-1271
    • /
    • 2014
  • The hydraulic deterioration of the drainage system in tunnel linings is one of the main factors governing long-term lining-ground interactions during the lifetime of tunnels. Thus, in the design procedure of a tunnel below the groundwater table, the possible detrimental effects associated with the hydraulic deterioration should be addressed. Hydraulic deterioration in double-lined tunnels can occur because of reasons such as clogging of the drainage layer and drain-pipe blockings. In this study, the coupled mechanical and hydraulic interactions between linings due to drain-pipe blockings are investigated using the finite-element method. A double-lined structural model incorporating hydraulic behavior is developed to represent the coupled structural and hydraulic behavior between the linings and drainage system. It is found that hydraulic deterioration hinders flow into the tunnel, causing asymmetric development of pore-water pressure and consequent detrimental effects to the secondary lining.

Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber (강섬유 보강 터널 라이닝 콘크리트의 성능 평가)

  • Jeon, Chan-Ki;Kim, Su-Man;Lee, Myung-Soo;Lee, Jong-Eun;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

A Study for Concrete Crack Minimize Methods in Large Section Tunnel Lining (라이닝 시공특성을 고려한 대단면 4차로 터널 균열최소화 방안에 대한 연구)

  • Choo, Seok-Yeon;Lee, Jae-Sung;Koh, Sung-Yil;Kim, Sang-Whang;Ra, Kyong-Woong;Kim, Tae-Hyok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.621-628
    • /
    • 2005
  • The concrete lining in tunnel performs structural and nonstructural functions. The concrete lining works as a structural member for released load and residual water pressure in NATM tunnel system. Also concrete lining used for finishing the tunnel surface. The initial crack of concrete lining is reported because of difficulties in construction process, which concrete is injected into 30$\sim$40cm narrow gap between lining form and tunnel surface through 500${\times}$600mm small injection holes in the form. In this paper, we research a reason of initial crack occurrence by the case study of 4 lane wide span tunnel, and propose an improved method for crack minimization in construction process. We verify that the proposed method can give qualified concrete lining by carrying out the concrete injection model test and the numerical analysis of concrete flow.

  • PDF

Evaluation of pore water pressure on the lining during tunnel operation (운영 중 터널에 작용하는 간극수압 평가기법)

  • Shin, Jong-Ho;Shin, Yong-Suk;Choi, Kyu-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제10권4호
    • /
    • pp.361-369
    • /
    • 2008
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most of tunnel is located in the ground. In case of leakage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, the pore water pressure can be developed on the lining due to the deterioration of the drainage system. The increased pore water pressure on the lining is termed here as 'residual pore water pressure'. Residual pore water pressure can be measured by piezometer, but it is generally not allowed because of damages of drainage system. Therefore, an indirect and nondestructive method is required for evaluating the residual pore water pressure. Moreover, understanding of pore water pressure is needed during healthy operation of the lining. In this study, a new method for evaluation of pore water pressure on the lining during operation is proposed using theoretical and numerical analysis. It is shown that the method is particularly useful for stability investigation of pore water pressure on the lining during operation using theoretical analysis with normalized pore water pressure curve.

  • PDF