• 제목/요약/키워드: Linguistic Steganography

검색결과 2건 처리시간 0.018초

Generative Linguistic Steganography: A Comprehensive Review

  • Xiang, Lingyun;Wang, Rong;Yang, Zhongliang;Liu, Yuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.986-1005
    • /
    • 2022
  • Text steganography is one of the most imminent and promising research interests in the information security field. With the unprecedented success of the neural network and natural language processing (NLP), the last years have seen a surge of research on generative linguistic steganography (GLS). This paper provides a thorough and comprehensive review to summarize the existing key contributions, and creates a novel taxonomy for GLS according to NLP techniques and steganographic encoding algorithm, then summarizes the characteristics of generative linguistic steganographic methods properly to analyze the relationship and difference between each type of them. Meanwhile, this paper also comprehensively introduces and analyzes several evaluation metrics to evaluate the performance of GLS from diverse perspective. Finally, this paper concludes the future research work, which is more conducive to the follow-up research and innovation of researchers.

A Generation-based Text Steganography by Maintaining Consistency of Probability Distribution

  • Yang, Boya;Peng, Wanli;Xue, Yiming;Zhong, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4184-4202
    • /
    • 2021
  • Text steganography combined with natural language generation has become increasingly popular. The existing methods usually embed secret information in the generated word by controlling the sampling in the process of text generation. A candidate pool will be constructed by greedy strategy, and only the words with high probability will be encoded, which damages the statistical law of the texts and seriously affects the security of steganography. In order to reduce the influence of the candidate pool on the statistical imperceptibility of steganography, we propose a steganography method based on a new sampling strategy. Instead of just consisting of words with high probability, we select words with relatively small difference from the actual sample of the language model to build a candidate pool, thus keeping consistency with the probability distribution of the language model. What's more, we encode the candidate words according to their probability similarity with the target word, which can further maintain the probability distribution. Experimental results show that the proposed method can outperform the state-of-the-art steganographic methods in terms of security performance.