• Title/Summary/Keyword: Linguistic Model

Search Result 287, Processing Time 0.027 seconds

Auto tuning of the hydraulic servo control system using fuzzy set theory (퍼지 집합 이론을 응용한 유압 서보 제어계의 자동 이득 조절)

  • 이교일;나종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.352-357
    • /
    • 1987
  • The Auto Tuning Controller is designed using Fuzzy set theory. And to verify its validity it is Applied to the Auto Tuner of hydraulic Control System. Fuzzy Tuning Procedures are written by linguistic model and translated into C language formation by preprocessor. Then it is executed with state feedback controller in real time, Fuzzy Logic Controller adjusts state feedback gain by proper tuning logic in each step to satisfy the desired maximum overshoot and settling time.

  • PDF

Fuzzy Logic Control for a Simplified Trawl System (간략화된 트롤 시스템의 퍼지제어)

  • 이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 1994
  • This paper describes the model of a simplified trawl system and a control method by using fuzzy algorithm in controlling the depth of trawl gear. Fuzzy logic control rules are sets of linguistic expression that are used by an experienced performer in real operation. For real time processing of the control rules, the look-up tables are used. Computer simulation results indicate that the proposed fuzzy controller shows fast response with minimum steady-state error and robustness properties to the simulated disturbance.

  • PDF

Phonology of Transcription (음운표기의 음운론)

  • Chung, Kook
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.23-40
    • /
    • 2003
  • This paper examines transcription of sounds from a phonological perspective. It has found that most of transcriptions have been done on a segmental basis alone, without consideration of the whole phonological systems and levels, and without a full understanding of the nature of the linguistic and phonetic alphabets. In a word, sound transcriptions have not been done on the basis of the phonology of the language and the alphabet. This study shows a phonological model for transcribing foreign and native sounds, suggesting ways of improving some of the current transcription systems such as the Hangeul transcription of loan words and the romanization of Hangeul, as well as the phonetic transcription of English and other foreign languages.

  • PDF

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

An Automatic Tagging System and Environments for Construction of Korean Text Database

  • Lee, Woon-Jae;Choi, Key-Sun;Lim, Yun-Ja;Lee, Yong-Ju;Kwon, Oh-Woog;Kim, Hiong-Geun;Park, Young-Chan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1082-1087
    • /
    • 1994
  • A set of text database is indispensable to the probabilistic models for speech recognition, linguistic model, and machine translation. We introduce an environment to canstruct text databases : an automatic tagging system and a set of tools for lexical knowledge acquisition, which provides the facilities of automatic part of speech recognition and guessing.

  • PDF

Extended Fuzzy DEA

  • Guo, Peijun;Tanaka, Hideo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.517-521
    • /
    • 1998
  • DEA(data envelopment analysis) is a non-parametric technique for measuring and evaluating the relative efficiencies of a set of entities with common crisp inputs and outputs. In fact, in a real evaluation problem input and output data of entities often flucturate. These fluctuating data can be represented as linguistic variables characterized by fuzzy numbers. Based on a fundamental CCR model, a fuzzy DEA model is proposed to deal with fuzzy input and output data, Furthermore, a model that extends a fuzzy DEA to a more general case is also proposed with considering the relation between DEA and RA (regression analysis) . the crisp efficiency in CCR modelis extended to an L-R fuzzy number in fuzzy DEA problems to reflect some uncertainty in real evaluation problems.

  • PDF

Composite Fuzzy Control of a Single Flexible Link Manipulator (단일 유연 링크 매니퓰레이터의 복합 퍼지 제어)

  • 김재승;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.353-353
    • /
    • 2000
  • To control a light weight flexible manipulator, a composite fuzzy controller is proposed. The controller is designed based on two time scaled models. A singular perturbation technique is applied for deriving the models. The proposed controller, however, does not use the complex equilibrium manifold equations, which are usually needed in the controller based on the two time scaled models. The controller for a slow sub-model and a fast sub-model are T-S type fuzzy controllers, which use 3 linguistic variables for each sub-model. A step trajectory is used in simulations as a reference trajectory of joint motions. The results of simulations with the proposed controller show excellent damping of flexible motions compared to a controller with derivative control of flexible motions.

  • PDF

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

A Design of Intelligent Patient Monitoring System using Model Base (모델 베이스를 이용한 지능적 환자 감시 시스템의 설계)

  • Kim, Jung-Ook;Lee, Seok-Pil;Chi, Sung-Do;Park, Sang-Hui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.155-159
    • /
    • 1995
  • A design method that can easily construct intelligent patient monitoring systems is proposed. To achieve the design method, the SES/MB concept and a discrete event-based logic control formalism based on a set theory is introduced. In this control paradigm the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by DEVS model of the system under control. Because data to be used for rule-based symbolic reasoning are to be abstracted, several AI methods are applied the processes. These methods are applied to intelligent patient monitoring systems so that they facilitate transformation from low level raw data to high level linguistic data. Model-based system representations have advantages of reusability, extensibility, flexsibility, independent testability and encapsulation.

  • PDF

On the Derivation of TSK Fuzzy Model for Nonlinear Differentical Equations (비선형 미분방정식의 TSK 퍼지 모델 유도에 관하여)

  • 이상민;조중선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.720-725
    • /
    • 2001
  • Derivation of TSK fuzzy model from nonlinear differential equation is fundamental issue in the field of theoretical fuzzy control. The method which does not yield affine local differential equations at off-equilibrium points is proposed in this paper. A prototype TSK fuzzy model which has triangular membership functions for linguistic terms of the antecedent part is derived systematically. And then GA is used to modify the membership functions optimally. Simulation results show the validity of the proposed method.

  • PDF