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Abstract: DEA (data envelopment analysis) is a non-parametric technique for measuring and evaluating the
relative efficiencies of a set of entities with common crisp inputs and outputs. In fact, in a real evaluation problem
input and output data of entities often fluctuate. These fluctuating data can be represented as linguistic variables
characterized by fuzzy numbers. Based on a fundamental CCR model, a fuzzy DEA model is proposed to deal
with fuzzy input and output data. Furthermore, a model that extends a fuzzy DEA to a more general case is also
proposed with considering the relation between DEA and RA (regression analysis). The crisp efficiency in CCR
model is extended to an L-R fuzzy number in fuzzy DEA problems to reflect some uncertainty in real evaluation

problems.
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1. Introduction

Data envelopment analysis (DEA) developed by
Charnes et al [2,3,4,6,7] is a non-parametric technique
for measuring and evaluating the relative efficiencies
of a set of entities with the common inputs and outputs.
Examples include school, hospital, libraries and, more
recently, whole economic and society systems, in
which outputs and inputs are always multiple in
character. Most of papers make an assumption that
input and output data are crisp ones without any
variation. In fact, inputs and outputs of DMUs are
ever-changeful. For example, for evaluating airplane
company efficiencies seat-kilometers available, cargo-
kilometers available, fuel and labor are inputs and
passenger-kilometers performed is an output[7]. It is
common sense that inputs and outputs are easy to
change because of weather, season, operating state and
50 on. Because DEA is a ‘boundary’ method sensitive
to outliers, it is very difficult to evaluate the unit’s
efficiency with varying inputs and outputs by
conventional DEA models. Some authors [8,11] have
proposed a lot of models to challenge how to deal with
the variation of data in efficiency evaluation problems
by stochastic models. In a more general case, the data
for evaluation are often collected from the
investigation by polling where the natural language
such as good, medium and bad are used to reflect a sort
of general situation of the investigated entities rather
than a special case [9,10]. For example, experts with a
long time working experience can make such general
conclusions that airline A’s passenger-kilometer is
about 200 passenger-kilometers and fuel cost is high.
These fuzzy concepts are used to summarize the
fluctuating of inputs and outputs, where the center of a
fuzzy number represents the most general case and the
spread reflects some possibilities. Given fuzzy input

and output data, evaluating the relative efficiencies of
entities can be regarded as a kind of computing with
words [14]. In this paper, considering fuzzy input and
output data, a fuzzy DEA model is proposed, and the
corresponding efficiency measures are also defined as
fuzzy numbers. Furthermore a model that extends the
fuzzy DEA to a more general form is also proposed
with considering the relation between DEA and
regression analysis (RA). Since the proposed fuzzy
DEA models can deal with perceptual information, a
perceptual evaluation can be done by the proposed
methods. It can be concluded that CCR model is
extended to the general model with fuzzy data.

2. DEA and its relation with RA
2.1 CCR (Charnes-Cooper-Rhodes) model:

CCR model is a linear programming (LP) based
method developed by charnes et al [2]. In CCR model
the efficiency of entity evaluated is obtained as a ratio
of the weighted sum of outputs to that of inputs subject
to the condition that the similar ratio for every entity is
not larger than 1. Mathematically, it is described as
follows:

max £y,
gy VX,
]
ST. EYi <1, =1,...m), M
1 4 Xj
uz0,
v20,

where the evaluated entities (j=1,...,n) called DMUs
form a reference set, y;=[Y;,Y;. Y] and
x;=[x;,X;,,x;,] are the given positive output and

input vectors of the jth DMU, respectively, m and s are
the numbers of outputs and inputs of each DMU,
respectively, n is the number of DMUs, g and v are
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the coefficient vectors of y; and x;, respectively and

the index o indicates the evaluated DMU. u=0
represents the vector whose elements are zero or
positive values but at least one element is not zero
whereas u>0 represents the vector whose elements

are all positive values.
The model (1) is equivalent to the following LP

problem.

max
“y,

X4

S.T. vx, =1,

Ly; <vx,, (=1,..,n), @
uz0,
¥v20.

2.2 Relation with RA

In essence, the efficient input-output levels in DEA
are those which are not dominated by any others in the
reference set, while regression analysis (RA) is an
average method in which it estimates an average level
for dependent variables by explanatory variables.
Many authors have contrasted the use of RA and DEA
as methods for comparative performance assessments
[1,4,5,13). CCR model and RA method can be
regarded as two special cases of the following goal
programming.

min E= i(aip, +bn,)
i=1

XN
S.T. KLy, - v'x, =p, -1, (i=1,...,n),
vx, =1,

pu20,

v20,

p; 20,

7,20,

where p, and 7, represent the positive and negative

3

deviations between 'y, and v'x,, respectively, g,
and b, are the coefficients of p, and 7),, respectively.
For the case of a,=b=1, the model becomes
LAV(the least absolute values) estimator which
evaluate the efficiency from the average level, while
for the case of a, >+, b > 0(i# 0,b,=1), the
model becomes DEA (2) which evaluates the efficiency

from the superior level. The associated efficiency
measure is defined as
Y, =P, =M, + Vx,=l+p,-1,,
3. Fuzzy DEA models
3.1 Fuzzy linear systems

A fuzzy set A defined on the n-dimensional space is
called an n-dimensional fuzzy vector A =[A,,---,A.],

for simplicity, whose element A; is characterized by a

@

triangular membership function as follows.

1-lx;~a; l/cj a;-¢;Sx;Sa;+c;¢; >0
. E
0 otherwise

#Aj(xj)={

o)
where a; and c; are the center and the spreadof A,

respectively. The membership function of the fuzzy
vector A is defined as follows.
ﬂA(x)=ﬂ4(x1)’\ﬂ.¢,(x2)'\"’A#A‘(xn)v ()]

where x'=[x,,---,x,]. A is simply denoted as (a,c)
with the center vector a’ =[a,,---,a,] and the spread

vector ¢ =[¢,"--,c,].

Given a fuzzy vector A=(a,c), a fuzzy linear
function
Y=Ax +--+Ax,, @]
can be represented as a triangular fuzzy variable as
follows[12]:
Y =(x'a,Ixl¢) ,
where x'=[x,---,x,].
3.2 Fuzzy DEA

Given fuzzy input and output data, CCR model (2)

can be naturally extended to the following fuzzy DEA
model.

®

max 'Y
ry ,l °
S.T. VX, =1,
p‘ij vX; , (=1,...n), o
uz20,
v20,

where X ;=(x;,c;) and Y;,=(y;d;) are an s-
dimensional fuzzy input vector and an m-dimensional
fuzzy output vector of the jth DMU. It can be seen that
fuzzy input and output vectors in (9) take the place of
crisp input and output vectors in (2). As a result, the
relations of “almost equal” and “almost larger than”
respectively corresponding to “equal” and “larger
than” and “maximizing a fuzzy number”
corresponding to “maximizing crisp output” are
introduced in (9). Moreover, a fuzzy number 1 =(1,¢)
replaces the real number 1 in (2) where e<1 is the
predefined spread of fuzzy number T. Here
X;—¢;>0 and y;~-d;>0 are assumed because we

consider positive fuzzy numbers.
In what follows, let us consider how to explain fuzzy

inequality 4 Y;<v'X;, maximizing a fuzzy number
£Y, and fuzzy equal v'X_ =1 in (9).

Definition 1: Given two fuzzy variables Z, =(z,,w,)
and Z,=(z,,w,) characterized by triangular
membership functions, the fuzzy inequality Z <Z,

can be defined by the following inequalities.

z-(A~-hbw <z,-(1-hbw,, 10
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L +(A-mw sz, +(1-hw,, (11)
where 0<h<1 is a predefined value of the fuzzy
membership function. It is clear that the fuzzy “<” is

defined by comparison of the endpoints of fuzzy
number Z, and Z,.

After defining a fuzzy inequality, let us consider
maximizing a fuzzy number. Keeping the consistency
with the concept of fuzzy inequality defined above,
“Maximizing a fuzzy number Z=(z, w)” can be
explained as simultaneously maximizing z-—(1-h)w
and z+(1-h)w, which can be dealt with by
maximizing a weighted function
AGz-(Q-mw)+A,(z+(1-kw), where 4 20,
A, 20 and A +4,=1.1f A =1, itis regarded as a
pessimistic opinion of maximizing fuzzy number Z
because the worst situation is considered whereas if
A, =1, it is regarded as an optimistic opinion of
maximizing fuzzy number Z because the best situation
is considered. In this paper, the case of A =1 is
considered, that is,
max z-(1-mw. (12)

Next, let us consider how to obtain v such that
VX, =1=(1,e) in (9) where v'X, =1 plays a role
of the normalized pseudo-input as in CCR model (2).
An explanation of ¥'X, =1 can be deduced from

Definition 1. Thatis, »'X, =1 is regarded as a kind
of limit case under the definition of ¥'X,<1. In

other words, the fuzzy number »'X_, should move
rightwards as much as possible. In the limit case, the
left endpoints of v'X_, and 1 overlap while the right

endpoint of ¥'X, is not larger than that of 1. Thus,

the problem for finding ¥ such that ¥'X = 1 can be
converted into the following optimization.

max Ve,

¥

S.T. vx,-(1-hv'e, =1-(1-h)e,
v'x, +(1—-h)v'c, S1+(1-h)e,
v20.

It can be seen that (13) is used to find out a fuzzy

number Z = v'X, with the largest spread and the

(13)

same left endpoint as fuzzy number T in h-level set.
Using formulations (10), (11), (12) and (13), a crisp
version of (9) is obtained as follows:

max Ay, -(1-h)4d,
Y]
S.T. max v'c,

S.T. v'x,-(1-h)ve,=1-(1-h)e,
vx,+(1-h)vc, S1+(1-h)e,
v20,

Hy;—(-hpd, <Vx; -A-hc,;

Hy; +(A=-hdd; < vx; +(1-h)Vc;, (=1,...,n),

puz20. (14)
It should be noted that the optimization problem (13) is
embedded into (14) to obtain the v such that
vX,=1. It can be seen that when c, =0,
d, =0 and =0, fuzzy DEA (14) just becomes CCR
model (2). It means that the model (14) can evaluates
the efficiencies of DMUs in more general mode, by
which the crisp, fuzzy and hybrid inputs and outputs
can be handled.
Theorem 1. If there is a feasible region in the
constraints of (13), there exists an optimal solution in
(14).
Theorem 2. If max[c,/x,,c,/x,,]<e in (13),
the optimization solution v restricted by »20
always exists.

Considering n DMUs, e is taken as

e= max(max c, /x,) in the optimization problem
J=heun k=l

(14).
The optimization problem (14) is equivalence to
the following LP problem.

max Ay, —(1-h)d,
Y

S.T. vc,2g,
vx,—(1-h)v'c, =1-(1-h)e,
vx, +(1-h)v'e, 1+ (1-h)e,
Ky, —(-hyd; <Jx, -(1-h)c; (15)
Ay; +(-hdd,; < Jx; +A-h)c;, (=1,....n)
pn20,v20,
where g, is the optimal value of the objective
function of (13).
Definition 2: The fuzzy efficiency of the DMU, with
fuzzy input X, =(x,c,) and output vectors

Y,=(y,,d,) is defined as an L-R fuzzy number
e = (w,,n,w,) as follows:
*t
n=tle
S &
Ky, —d,(1-h)
vi(x, +c,(1-h)
W = Ky, +d,(-h)
TV, —c,(1-h))

1]

w, =1- 16)
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where »" and g are the obtained coefficient vectors
from (15), w,, w, and n are the left, right spreads
and center value of the fuzzy efficiency ¢,
respectively.

Definition 3. The DUM with n+w, 21 for h-level is
called h-possibilistic D efficient DMU (PD DMU), on
the contrary, the one with n+w, <1 for h-level is
called h-possibilistic D inefficient DMU (PDI DMU).
The set of all PD DMUs is called h-possibilistic
nondominated set, denoted as S, .

It is obvious that for h=1, h-possibilistic D efficient
DMUs (PD DMUs) and h-possibilistic D inefficient
DMUs (PDI DMUs) become the conventional D
efficient DMUs and D inefficient DMUs.

Theorem 3. The center value of the fuzzy efficiency of
any DMU obtained from (15) is not more than 1.
Theorem 3 implies that evaluating fuzzy efficiencies
of DMUs by the model (15) is similar to evaluating
crisp efficiencies of DMUs by CCR model (2) which
seeks the nondominated one by other DMUs.

Now, we will discuss the given threshold h. If we
take a large value for A, it means that we consider a
relatively narrow range where all of the data have high
possibilities. Conversely, if we take a small value for A,
it means that we investigate the data in relatively wide
range. For example, i=1 means that only the centers of
fuzzy data need to be considered, while =0 means that
all of the possible data need to be considered.

3.3 Fuzzy model based on the model (3)

Let us consider an extension of the model (3)
corresponding to fuzzy input and output data.

Using the formulations (7) and (8), 4y, and v'x,
in (3) become the following two fuzzy set Z,, and
Z,, associated with the fuzzy output and input vectors
Y, and X,, respectively.

Zy=p4Y,, an
Z,=vX,. (18)
Definition 4: Given two fuzzy number Z =(z,.¢))
and Z, =(z,,e,), wedefine 6 and y as:

0=z —(-h)e, -z, +(1-h)e,, 19)
v=2z +(1-he, —z,—(1-he,, 20
where 8 and y are differences between the left and
right endpoints of [Z,], and [Z,],, respectively. 6
and y are called left and right deviations between
Zand Z,.

With the aid of Definition 4, the model (3) is
extended to the following model.

min E=Y50,+8y,+0,0,+0W;
J=1

O.py
S.T. max v'c,
ST v'x, -(1-h)v'e, =1-(1-h)e,
vx, +(1-hm)v'e, <1+(1Q-h)e,
v20,
Ay, —(-Ddd, - Vx; +(-hJc; =6, -6,
dy; +A=-hpd; - Jx; —A-B)Vc; =y, -y,
pn20,
0,20,
6,20,
v; 20,
(21)

where 6, and 8, (j=1,...,n) are positive and negative

v, 20,

left-deviations between 'Y, and v'X;, respectively,
y; and I[I;- are positive and negative right-deviations
between p'Y, and v'X, respectively. J;, 5;., o
and @, are the nonnegative coefficients of 8;, VY,

6; and y; for the jth DMU, respectively. As in the
model (3), changing these coefficients can influence
the relation between 'Y, and X, which means
variation of evaluation standards. Speaking in detail,
when 8, 5o, 8,5, @; >0 (=1,..,n j#o,

¢,=1) and ¢, >0 (j=1..,n), the model (21)
approaches (14) and
whend; =8, =¢,=¢; =1(¢=1,..,n), the model
becomes FLAV (fuzzy least absolute values) estimator.
It means the model (21) is a general case of models (2),
(3) and (14). The fuzzy efficiency measure is the same
as (17). It is obvious that Theorem 3 can not hold in
21).

Similarly, the optimization problem (21) is
equivalence to the following LP problem.
min  E= 2; 8,6, +5W;+0.0,+oN;

=

8.,y
ST. Ve, 2g,

v'x, —(1-h)v'c, =1-(1-h)e,

vx, +(1-h)v'c, <1+(1-h)e,

Ay; —(-hd; - Vx; +(-B)c,; =6, -6,
Ay; +(1-mdd; - Vx, -A-hc, =y, -y,
©20,v>0,6,20,0,20,y,20,y;20.22)

4. Conclusion
In this paper, two kinds of fuzzy DEA models are
proposed for evaluating the efficiencies of DMUs with
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fuzzy input and output data. The obtained efficiencies
are also fuzzy numbers to reflect the inherent fuzziness
in evaluation problems. It can be concluded that the
proposed fuzzy DEA models extend CCR model to
more general cases where crisp, fuzzy and hybrid data
can be handled easily. Because uncertainty always
exists in human thinking and judgement, fuzzy DEA
models can play an important role for perceptual
evaluation problems comprehensively existing in the
real world.
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