• Title/Summary/Keyword: Lingual nerve

Search Result 61, Processing Time 0.032 seconds

STUDY ON THE RELATIONSHIP OF THE INFERIOR ALVEOLAR NERVE POSITION BETWEEN BUCCAL AND LINGUAL SIDE USING CT AND ORTHPANTOMOGRAM (컴퓨터단층촬영과 파노라마상을 이용한 한국인 하치조관의 하악에서의 협, 설측 위치 관계에 대한 연구)

  • Shin, Hong-Soo;Hwang, Soon-Jung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • When bilateral sagittal split ramus osteotomy or mandibular angle reduction are carried out, we have to consider the position of inferior alveolar nerve. For bone splitting or resection using a saw or an osteotome, the bucco-lingual position of the inferior alveolar nerve plays an important role in the preventing perioperative complications such as paresthesia or anesthesia. Because it is rare to find literatures concerning the mean anatomic position of the inferior alveolar nerve in Koreans, we investigated 30 patients who underwent to take CT and orthopantomogram for implant surgery, and evaluated the bucco-lingual position and vertical relationship of the inferior alveolar nerve at the mandible. The results showed that the distance between inferior alveolar nerve and buccal plate was the farthest at mandibular second molar ($7.1{\sim}7.4mm$) and the nearest at mandibular angle area ($4.4{\sim}4.8mm$). But it was no statistical relationship between the bucco-lingual postion of inferior alveolar nerve on the CT and its vertical position on the OPT. In conclusion, the results suggest that a careful surgical procedure is needed at the mandibular angle area to avoid a nerve damage and there are sufficient bone materials at the mandibular second molar are for bilateral sagittal split ramus osteotomy or mandibular angle reduction or plate fixation. And OPT is not usefull for the evaluation of a relative bucco-lingual position of inferior alveolar nerve in relation to its vertical postion on the OPT.

Effect of duration from lingual nerve injury to undergoing microneurosurgery on improving sensory and taste functions: retrospective study

  • Nakanishi, Takashi;Yamamoto, Yuta;Tanioka, Kensuke;Shintani, Yukari;Tojyo, Itaru;Fujita, Shigeyuki
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.61.1-61.8
    • /
    • 2019
  • Background: The prognosis of recovery following microneurosurgery for injured lingual nerves varies among individual cases. This study aimed to investigate if recovery ratios of sensory and taste functions are improved by the microneurosurgery within 6 months after lingual nerve injury. Methods: We retrospectively assessed 70 patients who underwent microneurosurgery at the Wakayama Medical University Hospital for lingual nerve injuries between July 2004 and December 2016. Sensory and taste functions in lingual nerves were preoperatively evaluated using a static two-point discrimination test, an intact superficial pain/tactile sensation test, and a taste discrimination test. They were evaluated again at 12 and at 24 months postoperatively. The abundance ratio of Schwann cells in the excised traumatic neuromas was analyzed with ImageJ software following immunohistochemistry with anti S-100β antibody. Results: In early cases (microneurosurgery within 6 months after the injury), recovery ratios of sensory and taste functions were not significantly different at 24 months after microneurosurgery compared with later cases (microneurosurgery more than 6 months after the injury). Meanwhile, the ratio of patients with taste recovery within 12 months after microneurosurgery was significantly decreased in late cases compared with early cases. The abundance ratio of Schwann cells in traumatic neuroma was also significantly lower in later cases. Conclusion: Microneurosurgery more than 6 months after lingual nerve injury did not lead to decreased recovery ratio of sensory and taste functions, but it did lead to prolonged recovery of taste. This delay may be associated with a decrease in the abundance ratio of Schwann cells in traumatic neuromas.

A Case of Lingual Neurilemmoma (설신경에서 발생한 신경초종 1례)

  • Ro Woo-Young;Chung Sang-Hee;Cho Seung-Ho;Kim Hyung-Tae
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.1
    • /
    • pp.73-76
    • /
    • 2000
  • Neurilemmomas are uncommon benign tumors originating from the schwann cells of various cranial nerves, spinal nerves, and autonomic nerves. About 25% of the disease is found in the head and neck region and the most common single site of origin is known to be the acoustic nerve. However neurilemmomas of the peripheral segment of the lingual nerve are extremely rare neoplasms. We recendy experienced a case of a benign neurilemmoma of the lingual nerve and this case may be the second to be reported in the literature.

  • PDF

The Persistent Paresthesia Care on Left Lingual & Buccal Shelf Regions after the Lingual & Long Buccal Nerve Block Anesthesia -A Case Report- (설신경과 장협신경 전달마취 시행 후 발생된 설부와 협선반부의 장기간 이상감각증 관리 -증례보고-)

  • Kim, Ha-Rang;Yoo, Jae-Ha;Choi, Byung-Ho;Mo, Dong-Yub;Lee, Chun-Ui;Kim, Jong-Bae
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.9 no.2
    • /
    • pp.108-115
    • /
    • 2009
  • Trauma to any nerve may lead to persistent paresthesia. Trauma to the nerve sheath can be produced by the needle. The patient frequently reports the sensation of an electric shock throughout the distribution of the nerve involved. It is difficult for the type of needle used in dental practice to actually sever a nerve trunk or even its fibers. Trauma to the nerve produced by contact with the needle is all that is needed to produce paresthesia. Hemorrhage into or around the neural sheath is another cause. Bleeding increases pressure on the nerve, leading to paresthesia. Injection of local anesthetic solutions contaminated by alcohol or sterilizing solution near a nerve produces irritation; the resulting edema increases pressure in the region of the nerve, leading to paresthesia. Persistent paresthesia can lead to injury to adjacent tissues. Biting or thermal or chemical insult can occur without a patient's awareness, until the process has progressed to a serious degree. Most paresthesias resolve in approximately 8 weeks without treatment. In most situations paresthesia is only minimal, with the patient retaining most sensory function to the affected area. In these cases there is only a very slight possibility of self injury. But, the patient complaints the discomfort symptoms of paresthesia, such as causalgia, neuralgiaform pain and anesthesia dolorosa. Most paresthesias involve the lingual nerve, with the inferior alveolar nerve a close second. This is the report of a case, that had the persistent paresthesia care on left lingual & buccal shelf regions after the lingual and long buccal nerve block anesthesia.

  • PDF

Management and prevention of third molar surgery-related trigeminal nerve injury: time for a rethink

  • Leung, Yiu Yan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.5
    • /
    • pp.233-240
    • /
    • 2019
  • Trigeminal nerve injury as a consequence of lower third molar surgery is a notorious complication and may affect the patient in long term. Inferior alveolar nerve (IAN) and lingual nerve (LN) injury result in different degree of neurosensory deficit and also other neurological symptoms. The long term effects may include persistent sensory loss, chronic pain and depression. It is crucial to understand the pathophysiology of the nerve injury from lower third molar surgery. Surgery remains the most promising treatment in moderate-to-severe nerve injuries. There are limitations in the current treatment methods and full recovery is not commonly achievable. It is better to prevent nerve injury than to treat with unpredictable results. Coronectomy has been proved to be effective in reducing IAN injury and carries minimal long-term morbidity. New technologies, like the roles of erythropoietin and stem cell therapy, are being investigated for neuroprotection and neural regeneration. Breakthroughs in basic and translational research are required to improve the clinical outcomes of the current treatment modalities of third molar surgery-related nerve injury.

Recovery of lingual nerve injury: retrospective observational study (설신경 손상 환자의 회복에 대한 후향적 연구)

  • Hong, Dong-Hwan;Lim, Ho-Kyung;Kim, Soung-Min;Kim, Myung-Jin;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.355-364
    • /
    • 2011
  • Introduction: This study evaluated nerve recovery through retrospective study of patients with lingual nerve damage. Patients and Methods: The patients who visited Seoul National University Dental Hospital for an injury to the lingual nerve from April 1988 to August 2009 were enrolled in this study (n=41). The relevance of various factors including the causes of damage, age, etc. was analyzed by the subjective improvement based upon questionnaires and the clinical records. The evaluation variants were a subjective assessment and neurosensory examination composed of the direction, contact threshold, two-point discrimination, pin prick, thermal discrimination and current perception threshold. Results: The causes of lingual nerve damage were an extraction of the lower third molar (75.6%), local anesthesia (9.7%), incision and drainage (4.88%), trauma (2.44%). The evaluation of subjective prognosis exhibited no difference in sensory improvement depending on the cause, age and gender. Based upon the subjective evaluation, 44.7% of patients showed sensory improvement. The first hospital visit from injury was shorter in the group showing subjective improvement (3.41 months) than those showing no improvement (5.24 months) (P=0.301). Thirty six out of 41 patients were treated with only conservative therapy and 5 patients were treated by surgical intervention. Neurosensory examinations revealed improvement, although not statistically significant, and the degree was higher in the subjectively improved group. The contact threshold discrimination showed the highest correlation with subjective improvement (P=0.069). Most of the sensory recovery was gained within 12 months and the degree of improvement at the tip of the tongue was higher than that of the dorsum (P<0.001). Conclusion: The damaged lingual nerve improved at a rate of 44.7% and mostly within 12 months after the incident. There was no difference between the subjective prognosis and neurosensory examination depending on the cause of damage, age and gender, whereas the contact threshold discrimination was the best variant that reflected the subjective prognosis statistically.

CHANGE OF TASTE PREFERENCE AND TASTE BUD AFTER UNILATERAL LINGUAL NERVE TRANSECTION IN RAT (백서 편측 설신경 손상 후 미각 및 설유두의 변화에 대한 연구)

  • Kim, Yoon-Tae;Jeon, Seung-Ho;Yeom, Hak-Ryol;Kang, Jin-Han;Ahn, Kang-Min;Kim, Sung-Min;Jahng, Jeong-Won;Park, Kyung-Pyo;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.515-525
    • /
    • 2005
  • Purpose of study: Lingual nerve damage can be caused by surgery or trauma such as physical irriatation, radiation, chemotherapy, infection and viral infection. Once nerve damage occurred, patients sometimes complain taste change and loss of taste along with serious disturbance of tongue. The purpose of this study was to evaluate the effects of unilateral lingual nerve transection on taste as well as on the maintenance of taste buds. Materials & Methods: Male Sprague-Dawley rats weighing 220-250g received unilateral transection of lingual nerve, subjected to the preference test for various taste solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) with two bottle test paradigm at 2, 4, 6, or 8 weeks after the operation. Tongue was fixed with 8% paraformaldehyde. After fixation, they were observed with scanning electron microscope(JSM-$840A^{(R)}$, JEOL, JAPAN) and counted the number of the dorsal surface of the fungiform papilla for changes of fungiform papilla. And, Fungiform papilla were obtained from coronal sections of the anterior tongue(cryosection). After cryosection, immunostaining with $G{\alpha}gust$(I-20)(Santa Cruz Biotechnology, USA), $PLC{\beta}2$(Q-15)(Santa Cruz Biotechnology, USA), and $T_1R_1$(Alpha Diagnostic International, USA) were done. Immunofluorescence of labeled taste bud cells was examined by confocal microscopy(F92-$300^{(R)}$, Olympus, JAPAN). Results: The preference score for salty and sweet tended to be higher in the operated rats with statistical significance, compared to the sham rats. Fungiform papilla counting were decreased after lingual nerve transaction. In 2 weeks, maximum differences occurred. Gustducin and $T_1R_1$ expressions of taste receptor in 2 and 4 weeks were decreased. $PLC{\beta}2$ were not expressed in both experimental and control group. Conclusion: This study demonstrated that the taste recognition for sweet and salty taste changed by week 2 and 4 after unilateral lingual nerve transection. However, regeneration related taste was occurred in the presence of preserving mesoneurial tissue and the time was 6 weeks. Our results demonstrated that unilateral lingual nerve damage caused morphological and numerical change of fungiform papilla. It should be noted in our study that lingual nerve transection resulted in not only morphological and numerical change but also functional change of fungiform papillae.

Single-insertion technique for anesthetizing the inferior alveolar nerve, lingual nerve, and long buccal nerve for extraction of mandibular first and second molars: a prospective study

  • Joseph, Benny;Kumar, Nithin;Vyloppilli, Suresh;Sayd, Shermil;Manojkumar, KP;Vijaykumar, Depesh
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.6
    • /
    • pp.403-408
    • /
    • 2020
  • Objectives: Appropriate and accurate local anesthetic (LA) techniques are indispensable in the field of oral and maxillofacial surgery to obtain a satisfactory outcome for both the operating surgeon and the patient. When used alone, the inferior alveolar nerve block (IANB) technique requires supplemental injections like long buccal nerve block for extraction of mandibular molars leading to multiple traumatic experiences for the patient. The aim of this study was to anesthetize the inferior alveolar, lingual, and long buccal nerves with single-needle penetration requiring a minimal skillset such as administering a conventional IANB through introduction of the Benny Joseph technique for extraction of mandibular molars. Materials and Methods: This was a prospective study conducted in the Department of Oral and Maxillofacial Surgery, Kunhitharuvai Memorial Charitable Trust (KMCT) Dental College, Calicut, India. The duration of the study was 6 months, from June to November 2017, with a maximum sample size of 616 cases. The LA solution was 2% lignocaine with 1:100,000 adrenaline. The patients were selected from a population in the range of 20 to 40 years of age who reported to the outpatient department for routine dental extraction of normally positioned mandibular right or left first or second molars. Results: Of the 616 patients, 42 patients (6.8%) required re-anesthetization, a success rate of 93.2%. There were no complications such as hematoma formation, trismus, positive aspiration, and nerve injuries. None of the cases required re-anesthetization in the perioperative period. Conclusion: The Benny Joseph technique can be employed and is effective compared with conventional IANB techniques by reducing trauma to the patient and also requires less technique sensitivity.

Injury of submandibular gland and lingual nerve as complication third molar tooth extraction in mandible : a case report (하악 제3대구치 발치 시 합병증으로 발생할 수 있는 악하선과 설신경 손상: 증례보고)

  • Lim, Jae-Sung;Yoon, Hyun-Joong;Lee, Sang-Hwa
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.137-141
    • /
    • 2011
  • The extraction of an impacted third molar tooth is associated with many complications during the procedure and postoperative care. These complications include bleeding, swelling, pain, infection, as well as root fracture, proximal tooth injury, alveolar bone fracture, lingual nerve and inferior alveolar nerve injury etc. With the exception of a fractured root dislocation in the submandibular space, no direct submandibular gland injury related to extraction surgery has been reported until now. A 40 year old man visited the department of oromaxillofacial surgery at Yeouido St. Mary's Hospital for an extraction of the right mandible third molar. A partial third molar impaction was diagnosed by a clinical and radiographic examination. A surgical tooth extraction was practiced including buccal cortical bone osteotomy. During socket curettage, an encapsulated cyst-like lesion and a verified $3{\times}3\;cm$ neoplasm in the apically lingual direction were found during process of dissection. A biopsy confirmed that the neoplasm involved the submandibular gland and nerve trunk. This unusual anatomical organ injury during the surgical tooth extraction procedure is reported as a new complication during impacted third molar extraction.

Distribution of the lingual foramina in mandibular cortical bone in Koreans

  • Kim, Dae Hyun;Kim, Moon Yong;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.6
    • /
    • pp.263-268
    • /
    • 2013
  • Objectives: The interforminal region, between the mandibular foramen, is known as a relatively safe area that is free of anatomic structures, such as inferior alveolar nerve, submandibular fossa, and lingual side of the mandible is occasionally neglected for its low clinical importance. Even in the case of a severely constricted alveolus, perforation of the lingual cortical bone had been intended. However, anterior extension of the inferior alveolar canal, important anatomic structure, such as concavity of lingual bone, lingual foramina, and lingual canal, has recently been reported through various studies, and untypical bleeding by perforation of the lingual plate on implantation has also been reported. Therefore, in this study, we performed radiographic and statistical analysis on distribution and appearance frequencies of the lingual foramina that causes perforation of the mandibular lingual cortical bone to prevent complications, such as untypical bleeding, during surgical procedure. Materials and Methods: We measured the horizontal length from a midline of the mandible to the lingual foramina, as well as the horizontal length from the alveolar crest to the lingual foramina and from the lingual foramina to the mandibular border by multi-detector computed tomography of 187 patients, who visited Dankook University Dental Hospital for various reasons from January 1, 2008 to August 31, 2012. Results: From a total of 187 human mandibles, 110 (58.8%) mandibles had lingual foramina; 39 (20.9%) had bilateral lingual foramen; 34 (18.2%) had the only left lingual foramen; and 37 (19.8%) had the only right lingual foramen. Conclusion: When there is consistent bleeding during a surgical procedure, clinicians must consider damages on the branches of the sublingual artery, which penetrate the lingual foramina. Also, when there is a lingual foramina larger than 1 mm in diameter on a pre-implantation computed tomography, clinicians must beware of vessel damage. In order to prevent these complications and progress with a safe surgical procedure, a thorough radiographic examination before the surgery is indispensable. Further, clinicians should retract lingual flap definitely to confirm the shape of the lingual bone and existence of the lingual foramina.