• Title/Summary/Keyword: Linescan Camera

Search Result 7, Processing Time 0.024 seconds

A Design of Stand-Alone Linescan Camera Framegrabber Based on FPGA (FPGA 기반의 독립형 라인스캔 카메라 프레임그래버 설계)

  • Jeong, Heon;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1036-1040
    • /
    • 2002
  • To process data of digital linescan camera, the frame grabber is essential to handle the data in low-level and in high speed more than 30 MHz stably. Traditional approaches to the development of hardware in vision system for the special purpose are mai y based on PC system, and are expensive and gigantic. Therefore, there are many difficulties in applying those in the field. So we investigate, in this paper, the implementation of FPGA for real-time processing of digital linescan camera. The system is not based on PC, but electronic device such as micropncessor. So it is expected that the use of FPGAs for low-level processing represents a fast, stable and inexpensive system. The experiments are carried out on the web guiding system in order to show the efficiency of the new image processor.

Design of a real-time image preprocessing system with linescan camera interface (라인스캔 카메라 인터페이스를 갖는 실시간 영상 전처리 시스템의 설계)

  • Lyou, Kyeong;Kim, Kyeong-Min;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.626-631
    • /
    • 1997
  • This paper represents the design of a real-time image preprocessing system. The preprocessing system performs hardware-wise mask operations and thresholding operations at the speed of camera output single rate. The preprocessing system consists of the preprocessing board and the main processing board. The preprocessing board includes preprocessing unit that includes a $5\times5$ mask processor and LUT, and can perform mask and threshold operations in real-time. To achieve high-resolution image input data($20485\timesn$), the preprocessing board has a linescan camera interface. The main processing board includes the image processor unit and main processor unit. The image processor unit is equipped with TI's TMS320C32 DSP and can perform image processing algorithms at high speed. The main processor unit controls the operation of total system. The proposed system is faster than the conventional CPU based system.

  • PDF

Using FPGA for Real-Time Processing of Digital Linescan Camera

  • Heon Jeong;Jung, Nam-Chae;Park, Han-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.152.4-152
    • /
    • 2001
  • We investigate, in this paper, the use of FPGA(Field Programmable Gate Array) architectures for real-time processing of digital linescan camera. The use of FPGAS for low-level processing represents an excellent tradeoff between software and special purpose hardware implementations. A library of modules that implement common low-level machine vision operations is presented. These modules are designed with gate-level hardware components that are compiled into the functionality of the FPGA chips. This new synchronous unidirectional interface establishes a protocol for the transfer of image and result data between modules. This reduces the design complexity and allows several different low-level operations to be applied to the same input image ...

  • PDF

Development of Vision Technology for the Test of Soldering and Pattern Recognition of Camera Back Cover (카메라 Back Cover의 형상인식 및 납땜 검사용 Vision 기술 개발)

  • 장영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.119-124
    • /
    • 1999
  • This paper presents new approach to technology pattern recognition of camera back cover and test of soldering. In real-time implementing of pattern recognition camera back cover and test of soldering, the MVB-03 vision board has been used. Image can be captured from standard CCD monochrome camera in resolutions up to 640$\times$480 pixels. Various options re available for color cameras, a synchronous camera reset, and linescan cameras. Image processing os performed using Texas Instruments TMS320C31 digital signal processors. Image display is via a standard composite video monitor and supports non-destructive color overlay. System processing is possible using c30 machine code. Application software can be written in Borland C++ or Visual C++

  • PDF

Real-time Image Scanning System for Detecting Tunnel Cracks Using Linescan Cameras

  • Jeong, Dong-Hyun;Kim, Young-Rin;Cho, I-Sac;Kim, Eun-Ju;Lee, Kang-Moon;Jin, Kwang-Won;Song, Chang-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.726-736
    • /
    • 2007
  • In this paper, real-time image scanning system using linescan cameras is designed. The system is specially designed to diagnose and analyse the conditions of tunnels such as crack widths through the captured images. The system consists of two major parts, the image acquisition system and the image merging system. To save scanned image data into storage media in real-time, the image acquisition system has been designed with two different control and management modules. The control modules are in charge of controlling the hardware device and the management modules handle system resources so that the scanned images are safely saved to the magnetic storage devices. The system can be mounted to various kinds of vehicles. After taking images, the image merging system generates extended images by combining saved images. Several tests are conducted in laboratory as well as in the field. In the laboratory simulation, both systems are tested several times and upgraded. In the field-testing, the image acquisition system is mounted to a specially designed vehicle and images of the interior surface of the tunnel are captured. The system is successfully tested in a real tunnel with a vehicle at the speed of 20 km/h. The captured images of the tunnel condition including cracks are vivid enough for an expert to diagnose the state of the tunnel using images instead of seeing through his/her eyes.

  • PDF

An Embedded FPGA Implementation for a Cameralink Interface (카메라링크 접속을 위한 임베디드 FPGA의 구현)

  • Lee, Chang-Su
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.122-128
    • /
    • 2011
  • Although conventional analog linescan cameras are used widely, high-speed, high-resolution Cameralink standard will lead the area of frame grabber industry such as factory automation. In this paper, we are developing embedded frame grabber testbed without PC which will give an another solution to image processing applications. Therefore, we designed hardware schematics and programmed FPGA device with VHDL in order to interface Cameralink standard linescan CCD camera. In the future, our embedded on-chip controller could be applied to various image processing systems such as medical imaging, especially optical coherence tomography, machine vision and industrial electronics.

A Study on the Development of the System for Inspecting Cracks in the Inner Wall for Structures (구조물 내벽의 균열 검사를 위한 시스템 개발에 관한 연구)

  • 이상호;신동익;손영갑;이강문;마상준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.480-483
    • /
    • 1997
  • In this paper, we have proposed an automatic inspection system for cracks on the surface of a structure. The proposed system consists of the imaging system and the veh~cle system. The imaging system. a set of optical sensor, lens, illuminator, storage and their configuration, images the scene and store it on the hard disk. We adopted a linescan camera of 5000 pixel density to achieve high resolution without loss of simplicity. The vehicle system that moves the optical system IS ~mplemented by an AGV. The AGV moves forward at constant velocity and avoid obstacles to acquire a stable image. We have cmplemented an experimental system and have acquired images of the wall of hallway. The image is of 0.1-mmipixel resolution and the scanning time IS about 1 mlsec. The allow able scan.

  • PDF