• Title/Summary/Keyword: Lines optimization

Search Result 205, Processing Time 0.026 seconds

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

AUV hull lines optimization with uncertainty parameters based on six sigma reliability design

  • Hou, Yuan hang;Liang, Xiao;Mu, Xu yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.499-507
    • /
    • 2018
  • Autonomous Underwater Vehicle (AUV), which are becoming more and more important in ocean exploitation tasks, needs energy conservation urgently when sailing the complex mission path in long time cruise. As hull lines optimization design becomes the key factor, which closely related with resistance, in AUV preliminary design stage, uncertainty parameters need to be considered seriously. In this research, Myring axial symmetry revolution body with parameterized expression is assumed as AUV hull lines, and its travelling resistance is obtained via modified DATCOM formula. The problems of AUV hull lines design for the minimum travelling resistance with uncertain parameters are studied. Based on reliability-based optimization design technology, Design For Six Sigma (DFSS) for high quality level is conducted, and is proved more reliability for the actual environment disturbance.

The Automotive Door Design with the ULSAB Concept Using Structural Optimization (구조 최적 설계기법을 이용한 ULSAB 개념의 자동차 도어 설계)

  • 신정규;송세일;이권희;박경진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.187-194
    • /
    • 2000
  • Weight reduction for an automobile body is being sought for the fuel efficiency and the energy conservation. One way of the efforts is adopting Ultra Light Steel Auto Body (ULSAB) concept. The ULSAB concept can be used for the light weight of an automobile door with the tailor welded blank (TWB). A design process is defined for the TWB. The inner panel of door is designed by the TWB and optimization. The design starts from an existing component. At first, the hinge and inner reinforcements are removed. In the conceptual design stage, topology optimization is conducted to find the distribution of variable thicknesses. The number of parts and the welding lines are determined from the topology design. In the detailed design process, size optimization is carried out to find thickness while stiffness constraints are satisfied. The final parting lines are determined by shape optimization.

  • PDF

Development of Hull Form Optimization Method for Improving Resistance Performance of Small Catamaran (소형 쌍동선의 저항성능 개선을 위한 선형 최적화 기법 개발)

  • Jung Yoon Park; Jonghyeon Lee;Janghoon Seo;Dong-Woo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.332-340
    • /
    • 2023
  • The present study established hull form optimization for small catamaran based on variations of knuckle lines. Four knuckle lines below the free surface were employed as design variables. Knuckle lines were independently transformed within remaining the main dimensions of the existing hull. For the hull form optimization, the SHERPA algorithm of HEEDS was utilized. Computational fluid dynamics was employed to estimate the resistance performance. The optimal hull showed the improvement of resistance performance of 9.3% than that of existing hull. The improvement of wave and pressure distributions for optimal hull was confirmed. Throughout the present study, it is expected that established optimization method can be applied for various small vessels such as fishing and leisure boats.

Optimal buffer size control of serial production lines with quality inspection machines

  • Han, Man-Soo;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.350-353
    • /
    • 1996
  • In this paper, based on the performance analysis of serial production lines with quality inspection machines, we develope an buffer size optimization method to maximize the production rate. The total sum of buffer sizes are given and a constant, and under this constraint, using the linear approximation method, we suggest a closed form solution for the optimization problem with an acceptable error. Also, we show that the upstream and downstream buffers of the worst performance machine have a significant effect on the production rate. Finally, the suggested methods are validated by simulations.

  • PDF

Lightweight Automobile Design with ULSAB Concept Using Structural Optimization (구조 최적설계 기법을 이용한 초경량차체 개념의 경량 자동차 설계)

  • 신정규;송세일;이권희;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-286
    • /
    • 2001
  • Among the ULSAB methods for the lightweight automobile body, Tailor Welded Blank(TWB) is adopted and the design process is developed for the existing component. Topology optimization conducted to find the distribution of the variable thickness. The number of parts and the welding lines are determined from it. In the detail design, size optimization is carried out to find the optimum thickness of each part and then, the final parting lines are tuned by shape optimization. A commercial optimization software GENESIS is utilized for the optimization processes.

  • PDF

Optimization of a twin-skeg container vessel by parametric design and CFD simulations

  • Chen, Jingpu;Wei, Jinfang;Jiang, Wujie
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.466-474
    • /
    • 2016
  • The model tests results for the original lines of an 10000TEU container vessel show that the delivered power is higher and could not satisfy the requirement of energy saving effects and design targets. In this paper, the lines optimization of the 10,000 twin-skeg container vessel was carried out by parametric modeling and CFD simulations. At first, the CFD methods for twin-skeg hull form were validated by the comparison with the experimental results. Then more than one hundred parameters were adopted for the establishment of the fully parametric model. Based on the parametric model of the twin-skeg container vessel, the preliminary optimization was carried out by tight coupling of FRIENDSHIP-FRAMEWORK with potential flow of SHIPFLOW. Then several important parameters related to the after part of twin-skeg vessel were investigated by viscous flow computation. The final optimized variant PM11, which the total resistance was reduced by about 8.3% in model scale, is obtained within the constraints of general arrangement. And the model tests for variant PM11 was carried out in CSSRC, which shows that the resistance of optimized variant PM11 is decreased by about 8.6%.

Development of Formulas for Predicting Radio Noise from Overhead HVAC Transmission Lines using Least Squares Optimization Method (최소자승법에 의한 초고압 가공 송전선로의 라디오 잡음장해 예측계산식 개발)

  • Yang, Gwang-Ho;Ju, Mun-No;Myeong, Seong-Ho;Sin, Gu-Yong;Lee, Dong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • The radio noise produced by corona discharge in high voltage transmission lines is one of the most important line design considerations. Therefore it is necessary for transmission line designers to pre-evaluate radio noise using prediction formulas or field test results. In this paper, more accurate and useful formulas for predicting radio noise during fair and foul weathers in high voltage AC transmission lines were proposed through comparison with the existing formulas. Also it was verified by comparing with the long-term measured data from operating lines that the proposed formulas are more accurate. The proposed prediction formulas are developed by the applications of nonlinear least squares optimization method to radio noise database collected from lines throughout the world.

  • PDF

A Study on the Overhead Contact Lines Optimization According to the Increased Train Speed (전기철도 속도향상에 따른 전차선로 가선 시스템 최적화에 관한 연구)

  • Jung, In-Chul;Jeong, Rag-Gyo;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3037-3045
    • /
    • 2011
  • The optimization of the overhead contact lines according to the increased train speed is to design the low-sag-wire so that the pantograph can follow the vertical fluctuation of the catenary. Main factors for the overhead contact lines design include the span, dropper interval, movable bracket, vertical fluctuation of the catenary, tension, and wave propagation speed. In this paper, a model is proposed to improve the electric railway speed, and the speed improvement analysis technology is examined to ensure the stable and reliable electric railway. In addition, the effect between pantograph and catenary according to the speed improvement is quantitatively analyzed by using simulation.

  • PDF

GA-Optimized Compact Broadband CRLH Band-Pass Filter Using Stub-Inserted Interdigital Coupled Lines

  • Jeon, Jinsu;Kahng, Sungtek;Kim, Hyunsoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • The design of a new compact band-pass filter is proposed, which is based on the microstrip composite right- and left-handed transmission- line (CRLH-TL) structure. Particularly, the interdigital coupled (IDC) lines of the CRLH geometry are proposed to be parted by inserting open stubs to meet the specifications on the passband. In addition, there is another pair of stubs to complete the design in a limited space. These are considered in the TL-based analysis and the design parameters are calculated by genetic algorithm optimization. The measurement is shown to be acceptable and agreeable with the circuit and electromagnetic field simulations. In addition, the zerothorder resonance (ZOR) phenomenon is verified.