• Title/Summary/Keyword: Linear permanent magnet generator

Search Result 28, Processing Time 0.027 seconds

Detent Force Reduction of a Tubular Linear Generator Using an Axial Stepped Permanent Magnet Structure

  • Eid Ahmad M.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.290-297
    • /
    • 2006
  • Various methods have been discussed to reduce detent force in a tubular permanent magnet type linear single phase AC generator. In particular, the proposed methods depend on variations of the permanent magnet construction. These methods include two approaches in the form of sloped magnets, and conical magnets in addition to the conventional method of optimizing the magnet length. The undesired detent force ripples were calculated by a two dimensional Finite Element Method (FEM). Moreover, the generated electromotive force in the stator coils was calculated for each configuration of the permanent magnet. The experimental results agreed well with those obtained from the FEM-based simulations. Sufficient reduction in the detent force was achieved over the range of 40% while the root mean square of the output voltage was maintained. It was found that sloping the permanent magnet decreased the detent force and at the same time increased the generated rms voltage of the AC generator. The performance of the designed linear AC generator was evaluated in terms of its efficiency, total weight, losses, and power to weight ratio.

Tubular Permanent Magnet Linear Synchronous Generator Design For Linear Engine Applications

  • Eid, Ahmad M.;Kim, Sung-Jun;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.17-19
    • /
    • 2005
  • Variety of methods were discussed to reduce the cogging force in tubular permanent magnet type linear single phase AC generator. In paticular, the proposed methods depend on the variations of the permanent magnet construction. These methods Include two approaches in the form of sloped magnets, and conical magnets in addition to the conventional method of varying the magnet length. The undesired cogging force ripples were calculated by a two dimensional Finite Element Method(FEM). Moreover, the generated electromotive force in the stator coils was calculated fur each configuration of the permanent magnet. The experimental results agreed well with those obtained from the FEM-based simulations. Sufficient reduction in the cogging force was achieved over the range of 40% while the root mean square of the output voltage was maintained. It was found that the sloping the permanent magnet decreased the cogging force and at the same time increased the generated rms voltage of the AC generator. The performance of the designed linear AC generator was evaluated in terms of its efficiency, total weight, losses, and power to weight ratio.

  • PDF

Characteristic Analysis of Double sided Permanent Magnet Linear Generator by using Analytical Method (해석적 방법을 이용한 양측식 선형 영구자석 발전기의 특성해석)

  • Kang, Han-Bit;Choi, Jang-Young;Kim, Kyong-Hwan;Hong, Keyyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.652-659
    • /
    • 2014
  • This paper deals with characteristic analysis of double sided permanent magnet linear generator using analytical method. We derived magnetic field solutions produced by permanent magnet and armature reaction based on the 2D polar coordinate and magnetic vector potential. based on the derived magnetic field solutions, Induced voltage is obtained when arbitrary sinusoidal input condition. In addition, electrical parameters such as back-EMF constant, resistance, and inductance are obtained. Finally, generating performance characteristic at the rated load and various load is examined by using equivalent circuit.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

Eddy Current Loss Analysis of Slotless Double-sided Cored Type Permanent Magnet Generator by using Analytical Method (해석적 방법을 이용한 슬롯리스 양측식 코어드 타입 영구자석 발전기의 와전류 손실 해석)

  • Jang, Gang-Hyeon;Jung, Kyoung-Hun;Hong, Keyyong;Kim, Kyong-Hwan;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1639-1647
    • /
    • 2016
  • This paper deals with eddy current loss analysis of Slotless Double sided Cored type permanent magnet linear generator by using analytical method, space harmonic method. In order to calculate eddy current, this paper derives analytical solution by the Maxwell equation, magnetic vector potential, Faraday's law and a two-dimensional(2-D) cartesian coordinate system. First, we derived the armature reaction field distribution produced by armature wingding current. Second, by using derived armature reaction field solution, the analytical solution for eddy current density distribution are also obtained. Finally, the analytical solution for eddy current loss induced in permanent magnets(PMs) are derived by using equivalent, electrical resistance calculated from PMs volume and eddy current density distribution solution. The analytical result from space harmonic method are validated extensively by comparing with finite element method(FEM).

Robust Optimum Design of Resonance Linear Electric Generator for Vehicle Suspension (차량 노면 진동을 이용한 공진형 선형 발전기 시스템의 강건최적설계)

  • Choi, Ji Hyun;Kim, Jin Ho;Park, Sang-Shin;Seo, TaeWon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.403-407
    • /
    • 2014
  • To use vibration energy to generate electricity, a resonance vertical linear electric generator was applied to the suspension of a vehicle in a previous paper. However, the working conditions, including mass change in the vehicle body related to the cargo on board, number of passengers and the temperature difference caused by the operating environment, can influence the permanent magnet, which is the main component of the electric generator. Therefore, a robust optimum design is required to minimize the influences from the diverse operation conditions and maximize the electromotive force of the electric generator. In this paper, a resonance linear electric generator is introduced. Vibration response analysis to find the input velocity of the electric generator and an electromagnetic transient analysis to apply changes in the performance of the permanent magnet are performed. Finally, the optimum value of each design variable is derived using a Taguchi method.

Characteristic Analysis for the Reduction Detent Force of Double-sided Slotted Type Permanent Magnet Linear Generator for Wave Energy Conversion (파력에너지 변환용 양측식 슬롯티드 타입 선형 발전기의 디텐트력 저감을 위한 특성해석)

  • Seo, Sung-Won;Choi, Jang-Young;Koo, Min-Mo;Park, Hyung-Il;Hong, Keyyong;Kim, Kyong-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • This study considered the reduction of the detent force of a permanent magnet linear synchronous generator (PMLSG). The PMLSG has a relatively large magnetic air gap. Thus, a slotted type of stator structure is generally employed. Furthermore, the detent force, which is caused by energy imbalances owing to the interaction between tooth-slot structures and the permanent magnets (PMs), must be minimized for start-up operation. Therefore, in this paper, the methods of auxiliary teeth and a notch in the teeth are applied to reduce the detent force.

A Design and Voltage Control of a High Efficiency Generator with PM Exciter (고효율 영구자석 여자기 구조의 발전기 설계와 전압제어)

  • Jo, YeongJun;Lee, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1827-1834
    • /
    • 2016
  • This paper presents a high efficient generator with PM(Permanent Magnet) exciter. The proposed PM exciter for the generator can produce a linear output voltage according to the engine speed. This output voltage is directly used to control the field current of the generator to adjust the generator output voltage. In the proposed generator system, since the field winding current can be supplied by the PM exciter, the generator can self-start without any battery or an external power supply due to the low residential flux. Furthermore, the operating efficiency of the generator is higher than a conventional winding exciter. The main problem of the proposed generator system, the field winding current controller has to be embedded inside the generator, and it rotates according to the generator shaft. In this paper, the proper embedded current controller is designed for the proposed generator system. Due to the embedded controller cannot be connected to the outside the generator controller, the measured instantaneous output voltage of the generator is transferred by the photo isolated communication using shaft aligned infrared transmitter and receiver to keep the constant generator output voltage. In this paper, 10kW, 380V engine generator with PM exciter and the embedded DAVR(Digital Automatic Voltage Regulator) are described. The proposed high efficiency generator is simulated and tested to verify the effectiveness.

Optimization and Thrust force Calculation of Linear Generator in Starting Mode for Free-Piston Engine Applications

  • Lee, Hyun-Woo;Eid Ahmad M.;Sugimura Hisayuki;Choi, Kwang-Ju;Nakaoka Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.395-398
    • /
    • 2006
  • this paper provides a novel method to start the linear engine coupled linear generator from dead stop to its final steady state operation. This method depends mainly to use the linear generator mounted on the shaft of the linear engine to provide the required thrust force to move and oscillate the linear engine from bottom to top dead centers. It is a cost effective approach to start the internal linear combustion engine using its coupled tubular permanent magnet linear generator proposed here. This linear generator operates in this case in motoring mode, providing the required thrust force by feeding this linear generator phases with currents by using a three phase PWM inverter controlled by position feedback scheme. In order to provide the desired thrust force with specific value and direction, a position feedback is required to control the free piston engine motion through controlling the inverter switches using PWM control scheme.

  • PDF

Vector Control for Wave Power Generation System using Permanent Magnet Linear Synchronous Generator (파력발전용 선형발전시스템의 벡터제어)

  • Park, Joon Sung;Hyon, Byong Jo;Yun, Junbo;Lee, Ju;Choi, Jang-Young;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • This paper describes power generation from sea waves by using linear permanent magnet generator. A buoy is placed on the ocean surface and connected to the generator. The wave energy is carried out from the movement of a buoy. An electrical conversion system is needed between the generator and the grid. For an analysis of the power system, the modeling of the linear generator and converter system was proceeded. This paper proposes vector control method for wave power generation system using linear generator. In order to verify the proposed method, simulation and experiment performed and the results support the validity of the control scheme.