• Title/Summary/Keyword: Linear motion bearing

Search Result 88, Processing Time 0.028 seconds

Analysis of the Motion Errors in Linear Motion Guide (직선베어링 안내면의 운동오차 해석)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.139-148
    • /
    • 2002
  • Motion errors of linear motion guideway are analyzed theoretically in this paper. For the analysis, an new algorithm predicting motion errors of bearing and guideway is proposed using the Hertz's elastic deformation theory. Accuracy averaging effect can be calculated quantitatively by analyzing relationship between motion errors of guideway and spatial frequency of rail form error. Influences of design parameters on the motion errors including the number of balls, preload, ball diameter, bearing length and the number of bearings are analyzed. As it is difficult to measure the rail form error, experimental results are compared with results analyzed by the equivalent analysis method which evaluate the motion errors of guideway using the measured errors of bearing. From the experimental results, it is confirmed that the proposed analysis method it effective lo analyze the motion errors of linear motion bearing and guideway.

Analysis of the Motion Accuracy in Linear Motion Bearing Guide (직선베어링 이송계의 운동정밀도 해석)

  • 김경호;이후상;박천홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.179-183
    • /
    • 2000
  • This paper is concerned with achieving the high motion accuracy of linear motion bearing guide according to estimate accuracy average effect of bearing. Accuracy average effect can be obtained b analysis the relationship between motion error of the table and spatial frequency of the rail form error. And influences of ball diameter, ball number, and clock length on block motion error and block number on the table motion error are analyzed theoretically. In addition to, a simple experiment is performed in order to verify theoretical result.

  • PDF

Improvement of Motion Accuracy Using Transfer Function in Linear Motion Bearing Guide (전달함수를 이용한 직선베어링 안내면의 운동정밀도 향상)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.77-85
    • /
    • 2002
  • An analysis method which calculates corrective machining information for improving the motion accuracy of linear motion guide Is proposed in this paper. The method is composed of two algorithms. One is the algorithm fur prediction of the motion errors from rail form error. The other is the algorithm for prediction of rail form error from the motion errors of table. Transfer function is utilized in each algorithm, which represents the ratio of bearing reaction force variation to unit magnitude of spatial frequencies of raid from error. As the corrective machining information is acquired from the measured motion errors of table, the method has a merit not to measure rail form error directly. Validity of the method is verified both theoretically and experimentally. By applying the method, linear motion error of test equipment is reduced from 5.97$\mu$m to 0.58$\mu$m, and reduced from 32.78arcsec to 6.21 arcsec in case of angular motion error. From the results, it is confirmed that the method is very effective to improve the motion accuracy of linear motion guide.

A Study on the Fatigue Test and Performance Evaluation for Linear Motion Rolling Bearing (직선운동베어링 성능평가방법의 표준화 및 내구성 시험에 관한 연구)

  • 김태범;김동길;이상조;김익수;이위로;이동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1270-1274
    • /
    • 2003
  • The objective of this paper is to introduce the standard of evaluation methods and fatigue test for linear motion rolling bearing. In particular, attention well be given to the list of evaluation and fatigue results in this paper. The life of a linear motion rolling bearing is given by the length of distance covered between the connection parts before the first evidence of fatigue develops in the material of one of the raceways of rolling elements. The main factors that contribute to fatigue failures include: Number of load cycles experienced; Range of stress experienced in each load cycle; Mean stress experienced in each toad cycle; Presence of local stress concentrations.

  • PDF

Micropositioning of a Linear Motion Table with Magnetic Bearing Suspension (자기 베어링으로 지지 되는 직선운동 테이블의 초정밀 위치제어에 관한 연구)

  • 김의석;안형준;장인배;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.466-469
    • /
    • 1995
  • This paper presents a design and performance of the 6 D.O.F linear motion table with a magnetic bearing suspension. The linear positioning of the table with a 150mm stroke is driven by a brushless DC Linear motor and the other attitudes of the stage are controlled by the analog PD controller with magnetic bearing actuators. Each magnetic bearing unit which consists of 3 electromagnets, 3 capacitance probes and 3 backup bearings affords controlled forces by detecting the air gap between the probes and guideways. An integral type capacitance probe amplifier is equipped on the upper plate of the table so that the probe line to the probe amplifier can be shorter therefore the problems due to the stray capacitance and noise can be reduced. Form the pitch-yaw errormeasured by the autocollimator, the vertical and horizont straightness errors of the table are derived that they are maintained below 1.mu. m over 100mm stroke. The positioning accuracy of the linear motion is maintained below 2 .mu. m and the repeatability error is below 1 .mu. m

  • PDF

Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload (초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구)

  • Ro S.K.;Park C.H.;Kim S.H.;Kwak Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF

A Study on the Aperiod Bearing Only TMA (비주기 Bearing 표본입력에 대한 BOTMA 연구)

  • 이동훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.30-40
    • /
    • 2001
  • This paper presents a study on the design and simulation of bearing only target motion analysis to enhance the TMA capability using SONAR in underwater environment. A bearing only target motion analysis algorithm using aperiod bearing input signals has been developed and simulated in the MATLAB.

  • PDF

Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage (초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

Dynamic Characteristics of Linear Motion Guide Supported by Rolling Ball Bearings (볼 베어링을 이용 Linear Motion Guide의 동적 특성에 관한 연구)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-331
    • /
    • 2004
  • The linear motion (LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been used widely to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analysis. Linear analysis is accomplished by Lagrange equation and finite element method. And another trial that is nonlinear analysis about one mode of LM guide(bouncing mode) from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

  • PDF

Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage (초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발)

  • Lee, Sang-Ho;Chang, Jee-Uk;Kim, Oui-Serg;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF