• Title/Summary/Keyword: Linear motion

Search Result 2,027, Processing Time 0.029 seconds

Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation (매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘)

  • Chung, Won-Jee;Ju, Ji-Hun;Lee, Kee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

Optimal Control for Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.206-220
    • /
    • 2010
  • This paper proposes optimal control techniques for determining translational and rotational maneuvers that facilitate proximity operations and docking. Two candidate controllers that provide translational motion are compared. A state-dependent Riccati equation controller is formulated from nonlinear relative motion dynamics, and a linear quadratic tracking controller is formulated from linearized relative motion. A linear quadratic Gaussian controller using star trackers to provide quaternion measurements is designed for precision attitude maneuvering. The attitude maneuvers are evaluated for different final axis alignment geometries that depend on the approach distance. A six degrees-of-freedom simulation demonstrates that the controllers successfully perform proximity operations that meet the conditions for docking.

Dynamic Analysis and Experiment of Linear Ocsiilatory Actuator (리니어 진동 액튜에이터의 동특성 해석 및 실험)

  • Jang, S.M.;Jeong, B.S.;Lee, S.H.;Jeong, S.S.;Kweon, C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.113-115
    • /
    • 2003
  • Recently, many linear motion generators and are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loud speakers tostirling engine driven linear reciprocatings, alternators, compressors, textile machines etc. In this paper the dynamic performance with load is computed by a general purpose method, which the equation of electromagnetic field, the equation of electric circuit and the equation of motion are coupled together. We fumed out the driving system and the dynamic characteristics of current, voltage and displacement is confirmed experiment.

  • PDF

High-accuracy Motion Control of Linear Synchronous Motor (선형 동기 모터의 정밀모션 제어)

  • Jeong Seong Hyun;Sung Jun Yup;Park Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, the pole placement controller based on the Robust Internal-loop Compensator (RIC) structure, which has inherent structural equivalence to disturbance observer, is proposed to control a linear positioning system. This controller has the advantage to easily select controller gains by using pole placement without loss of that of original RIC structure. The principal is to construct the pole placement controller for a nominal internal model instead of unknown real plant. Using linear motion experiment showed the effectiveness of the proposed controller.

ON ANALYTICAL SOLUTION OF NON LINEAR ROLL EQUATION OF SHIPS

  • Tata S. Rao;Shoji Kuniaki;Mita Shigeo;Minami Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.134-143
    • /
    • 2006
  • Out of all types of motions the critical motions leading to capsize is roll. The dynamic amplification in case of roll motion may be large for ships as roll natural frequency generally falls within the frequency range of wave energy spectrum typical used for estimation of motion spectrum. Roll motion is highly non-linear in nature. Den are various representations of non-linear damping and restoring available in literature. In this paper an uncoupled non-linear roll equations with three representation of damping and cubic restoring term is solved using a perturbation technique. Damping moment representations are linear plus quadratic velocity damping, angle dependant damping and linear plus cubic velocity dependant damping. Numerical value of linear damping coefficient is almost same for all types but non-linear damping is different. Linear and non-linear damping coefficients are obtained form free roll decay tests. External rolling moment is assumed as deterministic with sinusoidal form. Maximum roll amplitude of non-linear roll equation with various representations of damping is calculated using analytical procedure and compared with experimental results, which are obtained form forced tests in regular waves by varying frequency with three wave heights. Experiments indicate influence of non-linearity at resonance frequency. Both experiment and analytical results indicates increase in maximum roll amplitude with wave slope at resonance. Analytical results are compared with experiment results which indicate maximum roll amplitude analytically obtained with angle dependent and cubic velocity damping are equal and difference from experiments with these damping are less compared to non-linear equation with quadratic velocity damping.

  • PDF

Extraction of Motion Parameters using Acceleration Sensors

  • Lee, Yong-Hee;Lee, Kang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose a parametric model for analyzing the motion information obtained from the acceleration sensors to measure the activity of the human body. The motion of the upper body and the lower body does not occur at the same time, and the motion analysis method using a single motion sensor involves a lot of errors. In this study, the 3-axis accelerometer is attached to the arms and legs, the body's activity data are measured, the momentum of the arms and legs are calculated for each channel, and the linear predictive coefficient is obtained for each channel. The periodicity of the upper body and the lower body is determined by analyzing the correlation between the channels. The linear predictive coefficient and the periodic value are used as data to measure the type of exercise and the amount of exercise. In the proposed method, we measured four types of movements such as walking, stair climbing, slow hill climbing, and fast hill descending. In order to verify the usefulness of the parameters, the recognition results are presented using the linear predictive coefficient and the periodic value for each motion as the neural network input.

Identification of Linear Structural Systems (선형 구조계의 동특성 추정법)

  • 윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.46-50
    • /
    • 1989
  • Methods for the estimation of the coefficient matrices in the equation of motion for a linear multi-degree-of-freedom structure arc studied. For this purpose, the equation of motion is transformed into an auto-regressive and moving average with auxiliary input (ARMAX) model. The ARMAX parameters are evaluated using several methods of parameter estimation; such as toe least squares, the instrumental variable, the maximum likelihood and the limited Information maximum likelihood methods. Then the parameters of the equation of motion are recovered therefrom. Numerical example is given for a 3-story building model subjected to an earthquake exitation.

  • PDF

Development of Rehabilitation Medicine Device for Compound Joint Motion (복합관절 운동용 재활의료기기)

  • 정성훈;유범상;김남균;박상민;송문상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.704-708
    • /
    • 2004
  • The RMD(Rehabilitation Medicine Device) with CJM(Compound Joint Motion) is the lower limb unit muscular strengthening promotion rehabilitation medicine device for patients of joint orthopedic operation or the deficient elder of ability to walk, the handicapped. Since the products for the rehabilitation medicine device have limited to the simplicity linear motion, those do not give efficient the lower unit muscular strengthening effects. This device which was under the development gives to exercise of hip joint and knee joint with user's selection at once, get out of the simplicity linear motion. Also it will be contributed to a field of rehabilitation medicine and a mobility aid technology of the deficient elders of ability to walk, the handicapped.

  • PDF

능동제어모세관을 이용한 유정압테이블의 운동정도 향상

  • 송영찬;박천홍;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.250-256
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clarance of table is actively controlled corresponding to the amount of error with the nariable capillary,anmed as ACC. In previous paper,through the basic test, it was confirmed that by the use of ACC,the error motion within 2.7 .mu.m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the freqency bandwidth of 5.5Hz structurally. In this paper,we performed practital compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy,iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error,the linear and angular motion error are improved upto 0.25 .mu.m and 0.4arcsec,which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.