• Title/Summary/Keyword: Linear model

Search Result 9,879, Processing Time 0.032 seconds

An Orthogonal Representation of Estimable Functions

  • Yi, Seong-Baek
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.837-842
    • /
    • 2008
  • Students taking linear model courses have difficulty in determining which parametric functions are estimable when the design matrix of a linear model is rank deficient. In this note a special form of estimable functions is presented with a linear combination of some orthogonal estimable functions. Here, the orthogonality means the least squares estimators of the estimable functions are uncorrelated and have the same variance. The number of the orthogonal estimable functions composing the special form is equal to the rank of the design matrix. The orthogonal estimable functions can be easily obtained through the singular value decomposition of the design matrix.

A GENERALIZED MODEL-BASED OPTIMAL SAMPLE SELECTION METHOD

  • Hong, Ki-Hak;Lee, Gi-Sung;Son, Chang-Kyoon
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.807-815
    • /
    • 2002
  • We consider a more general linear regression super-population model than the one of Chaudhuri and Stronger(1992) . We can find the same type of the best linear unbiased(BLU) predictor as that of Chaudhuri and Stenger and see that the optimal design is again a purposive one which prescribes choosing one of the samples of size n which has $\chi$ closest to $\bar{X}$.

The Evaluations of Sensor Models for Push-broom Satellite Sensor

  • Lee, Suk-Kun;Chang, Hoon
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • The aim of this research is comparing the existing approximation models (e.g. Affine Transformation and Direct Linear Transformation) with Rational Function Model as a substitute of rigorous sensor model of linear array scanner, especially push-broom sensor. To do so, this research investigates the mathematical model of each approximation method. This is followed by the assessments of accuracy of transformation from object space to image space by using simulated data generated by collinearity equations which incorporate or depict the physical aspects of linear array sensor.

  • PDF

A R&D Investment Model for Information and Telecommunications Technology by Group Decision Makers : An Application of Multiple Objective Linear Programming (집단의사결정에 의한 정보통신 기술분야별 R&D 투자배분결정 모형개발 : 다목적선형계획법의 응용)

  • 이동엽;이장우
    • Journal of Technology Innovation
    • /
    • v.7 no.2
    • /
    • pp.21-36
    • /
    • 1999
  • This paper presents a R&D investment model for Information and telecommunications (I&T) technology, which can be used by group decision makers, using multiple objective linear programming (MOLP). The MOLP model involves the simultaneous maximization of three linear objective functions associated with three criteria, which are social, technological, and economic criterion. This model is different from the traditional one which only involves the maximization of economic criterion. The presented problem in this model can be formulated as a problem of optimizing a linear function over an efficient set of MOLP. Its application to the National R&D Project in I&T Industry is also presented. In this application, the Analytic Hierarchy Process (AHP) is proposed to estimate the weights, which are used as the coefficients in each objective function of the MOLP model and in a linear decision function. By solving this problem, it yields a suitable R&D investment ratio to each technology field. It is showed that the MOLP model can be useful decision aid in formulating R&D investment plan in I&T industry which needs to be decided by group decision makers, not by an individual. It is expected that the MOLP model works as the basis for planning R&D investment strategy in I&T industry.

  • PDF

An Approach to Applying Multiple Linear Regression Models by Interlacing Data in Classifying Similar Software

  • Lim, Hyun-il
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.268-281
    • /
    • 2022
  • The development of information technology is bringing many changes to everyday life, and machine learning can be used as a technique to solve a wide range of real-world problems. Analysis and utilization of data are essential processes in applying machine learning to real-world problems. As a method of processing data in machine learning, we propose an approach based on applying multiple linear regression models by interlacing data to the task of classifying similar software. Linear regression is widely used in estimation problems to model the relationship between input and output data. In our approach, multiple linear regression models are generated by training on interlaced feature data. A combination of these multiple models is then used as the prediction model for classifying similar software. Experiments are performed to evaluate the proposed approach as compared to conventional linear regression, and the experimental results show that the proposed method classifies similar software more accurately than the conventional model. We anticipate the proposed approach to be applied to various kinds of classification problems to improve the accuracy of conventional linear regression.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • Lee, Jae-Ha;Lee, Jin-Hyeon;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

A Flexible Statistical Growth Model for Describing Plant Disease Progress (식물병(植物病) 진전(進展)의 한 유연적(柔軟的)인 통계적(統計的) 생장(生長) 모델)

  • Kim, Choong-Hoe
    • Korean journal of applied entomology
    • /
    • v.26 no.1 s.70
    • /
    • pp.31-36
    • /
    • 1987
  • A piecewise linear regression model able to describe disease progress curves with simplicity and flexibility was developed in this study. The model divides whole epidemic into several pieces of simple linear regression based on changes in pattern of disease progress in the epidemic and then incorporates the pieces of linear regression into a single mathematical function using indicator variables. When twelve epidemic data obtained from the field experiments were fitted to the piecewise linear regression model, logistic model and Gompertz model to compare statistical fit, goodness of fit was greatly improved with piecewise linear regression compared to other two models. Simplicity, flexibility, accuracy and ease in parameter estimation of the piece-wise linear regression model were described with examples of real epidemic data. The result in this study suggests that piecewise linear regression model is an useful technique for modeling plant disease epidemic.

  • PDF

Comparison of Linear-Quadratic Model, Incomplete-Repair Model and Marchese Model in Fractionated Carbon Beam Irradiation (탄소 빔 분할조사 시 Linear-Quadratic모델, Incomplete-Repair모델, Marchese 모델 결과 비교)

  • Choi, Eunae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.417-420
    • /
    • 2015
  • We obtained Surviving Fraction (SF) after irradiation carbon beam to compare the applicability of the Linear-Quadratic model, Incomplete Repair model, Marchese model. Mathematica software(ver 9.0) used to calcurate parameters and compared result. LQ model could not explain the entire response of fractionated carbon beam irradiation. It becomes necessary to construct models that extend the LQ model of conventional radiotherapy for the carbon beam therapy. By combining both Potentially Lethal Damage Repair (PLDR) and Sublethal Damage Repair (SLDR) a new LQ model can develop that aptly modeled the cellular response to fractionated irradiation.

Model-free $H_{\infty}$ Control of Linear Discrete-time Systems using Q-learning and LMI Based on I/O Data (입출력 데이터 기반 Q-학습과 LMI를 이용한 선형 이산 시간 시스템의 모델-프리 $H_{\infty}$ 제어기 설계)

  • Kim, Jin-Hoon;Lewis, F.L.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1411-1417
    • /
    • 2009
  • In this paper, we consider the design of $H_{\infty}$ control of linear discrete-time systems having no mathematical model. The basic approach is to use Q-learning which is a reinforcement learning method based on actor-critic structure. The model-free control design is to use not the mathematical model of the system but the informations on states and inputs. As a result, the derived iterative algorithm is expressed as linear matrix inequalities(LMI) of measured data from system states and inputs. It is shown that, for a sufficiently rich enough disturbance, this algorithm converges to the standard $H_{\infty}$ control solution obtained using the exact system model. A simple numerical example is given to show the usefulness of our result on practical application.

Seat Allocation Model for Single Flight-leg using Linear Approximation Technique (선형근사 기법을 이용한 단일비행구간의 좌석할당 모형)

  • Song, Yoon-Sook;Lee, Hwi-Young
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.65-75
    • /
    • 2008
  • Over the last three decades, there are many researches focusing on the practice and theory of RM in airlines. Most of them have dealt with a seat assignment problem for maximizing the total revenue. In this study, we focus on a seat assignment problem in airlines. The seat assignment problem can be modeled as a stochastic programming model which is difficulty to solve optimally. However, with some assumptions on the demand distribution functions and a linear approximation technique, we can transform the complex stochastic programming model to a Linear Programming model. Some computational experiments are performed to evaluate out model with randomly generated data. They show that our model has a good performance comparing to existing models, and can be considered as a basis for further studies on improving existing seat assignment models.

  • PDF