A Flexible Statistical Growth Model for Describing
Plant Disease Progress
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ABSTRACT A piecewise linear regression model able to describe disease progress
curves with simplicity and flexibility was developed in this study. The model divides
whole epidemic into several pieces of simple linear regression based on changes in
pattern of disease progress in the epidemic and then incorporates the pieces of linear
regression into a single mathematical function using indicator variables. When twelve
epidemic data obtained from the field experiments were fitted to the piecewise linear
regression model, logistic model and Gompertz model to compare statistical fit, goodness
of fit was greatly improved with piecewise linear regression compared to other two
models. Simplicity, flexibility, accuracy and ease in parameter estimation of the piece-
wise linear regression model were described with examples of real epidemic data. The
result in this study suggests that piecewise linear regression model is an useful techni-

que for modeling plant disease epidemic.

INTRODUCTION

For the purpose of analysis and comparison,
progress of plant diseases has been often des-
cribed into certain simple mathematical equa-
tions. Some researchers (1,8) used biological
growth functions to describe increase of dise-
ase in time, Logistic and Gompertz equations
are the examples of such a growth function.
The equations were linearized by appropriate
transfermation and slopes of the lines were
compared as a parameter of rate of disease
increase in time (2). In this type of analy-
sis of epidemic, problems lie in whether the
such simple equations are really valid for de-
picting various pafterns of epidemic progress
interaction of
Although
several other biological growth functions (2, 5)

that is the product of dynamic
host, parasite and its environment.

have been proposed as models for disease pro-
gression, researchers often find that their data
were not fit with the proposed equations. In
fact, several researchers suggested that no

growth equation is suited for all the known
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epidemic patterns (2,5). If the inappropriate
model is chosen, inaccurate estimates of épi-
demic parameters result as indicated by Berger
(1). For this reason, it is desirable to use a
single mathematical function that is more
flexible for describing various patterns of
disease progress. Weibull probability density
function was used to increase model flexibility
(7, but have problems in difficulties of
finding and measuring parameter values and
interpretation of those parameters.

In this study, piecewise linear regression
model was developed to describe plant disease
progressions with increased flexibility, accu-
racy and ease in parameter estimation. The
proposed model was evaluated and compared
with logistic and Gompertz models with actual

disease progress data.

DESCRIPTION OF THE MODEL

Although disease progress curve is typically
sigmoid, pattern of disease increase deviates
frequently from the sigmoid shape due to un-
expected changes in cultural and meteological
conditions or changes in host resistance asso-
ciated with the growth stage of plants. Figure
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1 shows a real progress curve of rice blast
disease in the field and illustrates this situat-
ion. Pattern of disease progress differed amo-
ng certain ranges of epidemic periods. The
epidemic in Figure 1 may be divided into
three portions that have different rates of
disease increase. Each portion of the epidemic
may be described with a simple linear relation-
ship, hence the entire epidemic could be
described with three pieces of simple linear
regression. Indicator variables may be used to
incorporate the separate pieces of linear reg-
ression into a single mathematical equation,
that is a piecewise linear regression.
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Figure. 1. Illustration of piecewise linear regression
with disease progress data of rice blast obtained
from the field experiments. ¢, and {,, are the
points of time when major changes in disease pro-
gression occurred.

General piecewise linear regression model
for the illustration of Figure 1 may be exp-
ressed as follows:

Y;=bo+bitin+b:(ti—1p1) tia T bs(Bi1—252)

tizte; ¢))
where Y; is disease proportion or % disease;
%; is time variable; ¢, and #,, are the cons-
tants that are the points of time where slope
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change occurs; ¢;; and ¢;, are indicator varia-
bles defined as follows:

g1 if tn>tp
iz otherwise

g1l £ >tp
370 otherwise

tp1<tp:
The equation (1) provides a three-piecewise
linear regression and its response function is:
E(Y)=byt+bit:+b.(t1—tp)t2+ by
(tl_tn)ts (2)

The first-piecewise linear regression is when
t,<tp; so that ¢z,=0, ¢,=0. The equation (2)
becomes:

E(Y)=b,+bit 3
6 <tp

where b, is rate parameter of disease increase
and b, is the Y intercept.
The second-piecewise linear regression 1is

when tp,<t;<tp,, so that £,=1, ¢,=0. The
equation (2) becomes:
E(Y)=(by—bstp1) + (b1+b)t1 €))]

tp <t2ailpa
The rate parameter in this time range is (&
+b,) and Y intercept is (bo—batp1).
On the other hand, when t,>¢p, so that #;=
t,=1, the equation (2) becomes:

E(Y)=(by—bstp1—bstps) + (b1 b:+b)t, (5)

t1>tps
The parameters of slope and Y intercept of
the third-piecewise linear regression become
(b1+b24-b5) and (Bo—batp1—bstps), rESPECtively.
Parameters for this example are shown in
Figure 2.

In actual application of piecewise linear reg-
ression, number of pieces of linear regression
is determined by the shape of disease progress
curves. The relationships between number of
pieces of linear regression (Ng), number of
time points that slope changes (Np), and
number of indicator variables used (IN,) are:

Np=Np+1=N;+1 or
NP=N1———NR'_1
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Figure. 2. Illustration of parameters of piecewise
‘linear regrsssion model : E(Y)=b,+b,t,+b,(£;—tp1)
2a-bs (81— tp2)Es, where #, is an independent variable
(time), and #, and #; are the indicator variables
.associated with #,, and £p,.

Majority of epidemic progress pattern may be
-described with two- or three-piecewise linear
regression model. Some more complex case of
epidemic may need more than three-piecewise
linear regression model for describing its dise-
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ase progress pattern.

The extention of the model (2) to more
than three-piecewise linear regression is stra-
ightforward. For instance, if the slope of the
regression line sets to change at the three
different points of time, £p1, 2 and #ps, the
response function of the model would be:

E(Y)=by+bit1+b:(t1—tp1) b2+ b (81— 1p2)1s

+b.(t1—2p3)ts @)
1 <tpatps
where: f;=time
fo 1 if t1>t?1
2= 0 otherwise
fo 1if t1>t:n2
3= 0 otherwise
ti= 1 if t1>l’p3

4= 0 otherwise

To illustrate the use of mocel (2), consider
the actual disease progress data in Table 1.
From the plot of the data, it appeared that
pattern of disease progression changes at 21
and 57 days after inoculation. So the three-
piecewise linear regression model (2) is to be
employed with zp,=21 and #,,=57. The fitting
of regression model (2) with data of Table
1 becomes routine by following the standard
linear regression procedure (6). The fitted
response function is:

E(Y)=-—30.19+2.18t:—1. 57 —21)2.—
2.17(,—57)¢,
R?=0, 9434

Table 1. Disease progress data of rice blast epidemic observed in field condition and matrix of time(#)

variable for an example of generating piecewise linear regression equation. £, and £; are

indicator var-

iables associated with points of time where major slope changes occurred (21 and 57 days after inocula-

tion in this example)

(% (iy';sease) (days after )i";loculation) f =20t (=574

0.4 14 14 0 0
14.7 21 21 0 0
16.9 29 29 8 0
30.0 36 36 15 0
32.7 43 43 22 0
31.3 50 50 29 0
36.3 57 57 36 0
16.2 71 71 50 14
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. _1if z.>21
where: 2= otherwise
_11f t,>57

fo—= .
37" 0 otherwise

From this fitted model, expected unit disease
is estimated to increase by 2,18 for unit in-
crease of time up to 21 days after inoculation,
and by 0.61 (=2.18—1.57) up to 57 days
after inoculation and to decline by 1.56 (=
2.18—1.57—2.17), thereafter.

APPLICATION OF THE MODEL

Brief introduction of the logistic and

Gompertz model. For the purpoese of compa-
rison of the piecewise linear regression with
other biological growth equations, the logistic
and Gompertz models were briefly explained
in this section.
Logistic growth medel for plant disease epi-
demic is expressed as:
y=1/(1-+exp(—In y/(1—y0))+rt) ®
where: y=disease proportion; y,=initial disease
proportion; r=rate parameter; t=time. Equa-
tion (8) is derived from the differential growth
function:
dy/dt=ry(1—y) €©))
The rate parameter (») of the equation (9)
was termed as the apparent infection rate by
Vanderplank (8). The equation (8) is linear-
ized by transfermation and becomes following:
logit (y)=logit (y,)-+rt (10)
The integrated logistic curve is sigmoid and
symmetrical at its center of sigmoid curve

1, 8).

Equation of Gompertz model for biological

growth is:
y=exp (—b(exp(—rt))) an
where: b=position parameter; r=rate para-
meter; z=time. Equation (11) is derived by
integrating from the differential equation:
dy/dt=ry In(1/y) (12)
The equation (11) is linearized by transfer-
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mation and takes the following form:
—In(—=In(y))=—1In(d) +rz a3

The integrated curve of the equation (11) is
sigmoid but asymmetrical and appreciably
skewed to the right direction (1).
Comparison of epidemic. Piecewise linear
regresSion, logistic medel and Gompertz model
were compared by determining model fitness
with actual disease progress curves. Twelve
epidemic curves were obtained from the field
water-management experiments on rice blast
disease conducted in Louisiana, USA in 1984
and 1985 (3,4). For lcgistic ard Gcempertz
models, disease proportions for 12 curves were
treated with the appropriate transfermation
(equations 10 and 12). For piecewise linear
regression model, points of time at which di-
sease progress pattern changes were determi-
ned from the plots of the data of 12 epidemics.
Matrices of time () variables were then
obtained with proper indicator variables. The
linear regression was generated

The least square

piecewise
based on these matrices.
techniques was used to cbiain rarameter
estimates. Statistical fitness of the three mod-
els was determined by comparing coefficient
of determination with the linear regressions,
Computing was done using CRISP (Crop Res-
earch Integrated Statistical Package) language
from the VAX 11/785 main frame computer
in the Computing Center of Rural Develop-
ment Adminstration. The results are summariz-
ed in Table 2. Among the three meodels,
piecewise linear regression model provided the
best statistical fit for all 12 epidemics. Parti-
cularly for the last three epidemics listed in
Table 2, statistical fit was greatly improved
with the piecewise linear regression. SEVEN
out of twelve epidemics were fitted well to
the two-piecewise linear regression model and
remaining six epidemics were described with
three-piecewise linear regression model with
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Table 2. Comparison of the statistical parameters of 12 rice blast epidemics fitted to piecewise linear
regression model, to logistic model and to Gompertz model

Piecewise linear

Epidemic iizzjﬁzi regression model® Logistic model® Gompertz model
7 72 73 R? r R? r R?

1 11 1.118 0. 442 — 0. 958 0.166 0.707 0. 062 0.912
2 11 0.227 0. 980 — 0.977 0.164 0.717 0. 051 0.929
3 11 1.098 0. 561 — 0.979 0.159 0.757 0. 061 0.953
4 11 0.318 2.231 -—1.279 0.973 0.136 0.693 0. 050 0.934
5 11 0.138 2.478 —1.909 0.987 0.129 0. 686 0. 051 0. 841
6 11 0.109 0.614 — 0.972 0.138 0. 696 0. 036 0.870
7 8 2.354 —1.383 — 0. 987 0. 084 0. 856 0. 055 0. 956
8 8 3.513 —1.841 —1.353 0. 989 0.076 0. 806 0. 050 0. 904
9 8 4.318 —3.033 — 0. 957 0.083 0. 880 0. 058 0. 944
10 8 3.846 —3.415 —0.550 0.991 0. 036 0.520 0. 018 0. 596
11 8 3.228 —2.726 — 0.948 0. 067 0. 498 0. 027 0. 558
12 8 2.185 —1.568 —2.166 0.943 0. 051 0. 356 0.017 0. 358

* Parameters ‘r;, r, and ;' are the partial regression coefficients of the model. R? is coefficient of det-
ermination of the model and is significant at P=, 05,

b Rate parameter ‘r’ is apparent infection rate termed by Vanderplank (8). The model is significant at

P=.05.
¢ Rate parameter
cant at P=, 05,

€

good statistical fit. Gompertz model pro-
vided better fit compared to the logistic model
for all 12 epidemics. Particularly, biological
growth model becomes less fit when the dise-
ase increase slowed dcwn rapidly as the sea-
sons progressed. Coefficients of determination
for 12 disease progress curves ranged from 97
to 999 with the piecewise linear regression
model, 60 to 94% with the logistic model and

60 to 98% with Gompertz model, respectively.

DISCUSSICN

The linearization of disease progress curves
is necessary procedure in analysis of epidemic
to compare epidemics, to predict disease prog-
ress and to estimate effects of various control
measures being applied on plant diseases.
Biological growth models for disease progress
curves have often had problems in linearizati-
on eventhough various transfermations were
applied. This was usually due to the fact that
disease progress curves of many epidemics
often deviate significantly from the standard

7’ is the slope of the linearized Gompertz equation. The model is statistically signifi-

curve of the model Although
disease progress curves were successfully lin-

employed.

earized, transfermations may be prone to ob-
scure the fundamental interconnection between
the variables, and thus may distort important
biological facts (6). When the
transfermation is employed for linearization

iogarithmic
of biclogical growth medel, it needs to check
whether the transformed error terms meet
the condition of the untransformed error terms.
This kind of residual analysis has not been
done usually. If inadequate model is used for
epidemic analysis, parameters obtained from
the model become incorrect.

Piecewise linear regression model proposed
in the study avoids the problems present in
flexibility and transfermation that are descri-
bed in other models. Piecewise linear regress-
ion model is relatively simple, easy to under-
stand and it enables analysis of almost 'all
shapes of disease progress curves without any
transfermation. This model also allows calcu-
lation of the rate parameters separately at a
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certain range of time and provides additional
information on the disease progression. Unex-
pected changes occurred in the epidemic can
be partly incorporated into the model using
indicator variables by determining the points
of time where the pattern of disease progres-
sion changes.

Most of biological growth models are purely
phenological and deterministic and do not pro-
vide informations on the nature of host, patho-
gen and environment interactions, since all
interaction factors are incorporated into a sin-
gle rate parameter ‘~’ (2). This limitations
are less severe in the piecewise linear regres-
sion model because the model includes the
time points when the significant changes in
disease progress occur during the epidemic.

Through separating the entire epidemic into
several pieces of linear regression, the propo-
sed model greatly improved model fitness. The
increased statistical fit of the model can pro-
vide more precise estimates of epidemic para-
meters. The increased preciseness and flexi-
bility of the piecewisz linear ragrassion model
can be effectively used as a powerful tool for
the analysis of epidemic and simulation studies.

Between the logistic and Gompertz models,
Gompertz model provided better statistical fit
than the logistic model did in this study. This
was expected because disease progress curves
of the 12 epidemics were asymmetrical and
skewed to the right. Better statistical fit with
Gompertz model campared to the logistic was
reported for epidemic progress of several plant
diseases (1).
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