• Title/Summary/Keyword: Linear model

Search Result 9,879, Processing Time 0.032 seconds

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

  • Park, Sang-Shin;Park, Se Myung;Jung, Jongkyo;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.250-254
    • /
    • 2013
  • In this research, the linear electrical generator in wave energy farm utilizing resonance power buoy system is studied. The mechanical resonance characteristics of the buoy and the wave are analyzed to maximize the kinetic energy in a relatively small wave energy area where WRPS is operated. In this research, we chose an analog model of the linear electrical generator of which size is one-hundredth of an actual size of it in WPRS (Wave energy farm utilizing Resonance Power buoy System) prior to verifying the characteristics of actual model of linear electrical generator in WRPS. In addition, the finite element analysis is conducted using commercial electromagnetic analysis software named MAXWELL to examine the electric characteristic of linear generator. Finally, for the verification of dynamic and electric characteristics of linear generator, the prototype was manufactured and the experiments to measure the displacement and the output electric power were performed.

Market Timing and Seasoned Equity Offering (마켓 타이밍과 유상증자)

  • Sung Won Seo
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.145-157
    • /
    • 2024
  • Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs' decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.

A Random Fuzzy Linear Regression Model

  • Changhyuck Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.287-295
    • /
    • 1998
  • A random fuzzy linear regression model is introduced, which includes both randomness and fuzziness. Estimators for the parameters are suggested, which are derived mainly using properties of randomness.

  • PDF

An Ultrasonic Measurement Model to Predict a Reflected Signal from Non-Linear Burning Surface of Solid Propellants

  • Song, Sung-Jin;Kim, Hak-Joon;Oh, Hyun-Taek;Lee, Sang-Won;Song, Seung-Hyun;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.531-540
    • /
    • 2007
  • While determination of the solid propellant burning rates by ultrasound, it has been reported that the frequent data scatters were caused by two major factors; 1) variation in the acoustical properties, and 2) non-linear burning of a solid propellant sample under investigation. This work is carried out for the purpose of investigating the effect of non-linear burning of solid propellant samples. Specifically, we propose an ultrasonic measurement model that can predict the reflections from solid propellant surfaces with non-linear burning by the combination of two ingredients; 1) a pulse-echo ultrasonic measurement model for a planar, circular reflector imbedded in the second medium in an immersion set-up, and 2) an efficient model of non-linear burning surfaces with a number of small, planar circles. Then, we demonstrate the capability of the proposed measurement model by simulation of the surface echo signals from four different burning surfaces that have been generated by the combination of two factors; the base shape (flat or paraboloidal) and the surface roughness (perfectly smooth or randomly rough). From the simulation presented here, we can confirm the fact that the non-linear burning of the propellant can cause the waveform change of the burning surface echo and the corresponding spectrum variation.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • 이재하;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

A Method of Applying Work Relationships for a Linear Scheduling Model (선형 공정계획 모델의 작업 관계성 적용 방법)

  • Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.31-39
    • /
    • 2010
  • As the linear scheduling method has been used since the Empire State Building linear schedule in 1929, it is being applied in various fields, such as construction and manufacturing. When addressing concurrent critical paths occurring in a linear construction schedule, empirical researches have stressed resource management, which should be applied for optimizing workflow, ensuring flexible work productivity and continuous resource allocation. However, work relationships have been usually overlooked in making the linear schedule from an existing network schedule. Therefore, this research analyzes the previous researches related to the linear scheduling model, and then proposes a method that can be applied for adopting the relationships of a network schedule to the linear schedule. To this end, this research considers the work relationships occurring in changing a network schedule into a linear schedule, and then confirms the activities movement phenomenon of linear schedule due to workspace change, such as physical floors change. As a result, this research can be used as a basic research in order to develop a system generating a linear schedule from a network schedule.

Performance Improvements of SCAM Climate Model using LAPACK BLAS Library (SCAM 기상모델의 성능향상을 위한 LAPACK BLAS 라이브러리의 활용)

  • Dae-Yeong Shin;Ye-Rin Cho;Sung-Wook Chung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • With the development of supercomputing technology and hardware technology, numerical computation methods are also being advanced. Accordingly, improved weather prediction becomes possible. In this paper, we propose to apply the LAPACK(Linear Algebra PACKage) BLAS(Basic Linear Algebra Subprograms) library to the linear algebraic numerical computation part within the source code to improve the performance of the cumulative parametric code, Unicon(A Unified Convection Scheme), which is included in SCAM(Single-Columns Atmospheric Model, simplified version of CESM(Community Earth System Model)) and performs standby operations. In order to analyze this, an overall execution structure diagram of SCAM was presented and a test was conducted in the relevant execution environment. Compared to the existing source code, the SCOPY function achieved 0.4053% performance improvement, the DSCAL function 0.7812%, and the DDOT function 0.0469%, and all of them showed a 0.8537% performance improvement. This means that the LAPACK BLAS application method, a library for high-density linear algebra operations proposed in this paper, can improve performance without additional hardware intervention in the same CPU environment.

A New Approach for Forest Management Planning : Fuzzy Multiobjective Linear Programming (삼림경영계획(森林經營計劃)을 위한 새로운 접근법(接近法) : 퍼지 다목표선형계획법(多目標線型計劃法))

  • Woo, Jong Choon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.271-279
    • /
    • 1994
  • This paper descbibes a fuzzy multiobjective linear programming, which is a relatively new approach in forestry in solving forest management problems. At first, the fuzzy set theory is explained briefly and the fuzzy linear programming(FLP) and the fuzzy multiobjective linear programming(FMLP) are introduced conceptionally. With the information obtained from the study area in Thailand, a standard linear programming problem is formulated, and optimal solutions (present net worth) are calculated for four groups of timber price by this LP model, respectively. This LP model is reformulated to a fuzzy multiobjective linear programming model to accommodate uncertain timber values and with this FMLP model a compromise solution is attained. Optimal solutions of four objective functions for four timber price groups and the compromise solution are compared and discussed.

  • PDF

Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations : Linear Viscoelastic Behavior

  • Park, Eun-Kyoung;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.161-171
    • /
    • 2011
  • The objective of the present study is to systematically characterize a linear viscoelastic behavior of petroleum jelly in small amplitude oscillatory shear flow fields correspondent to the rheological ground state. With this aim, using a strain-controlled rheometer, the dynamic viscoelastic properties of commercially available petroleum jelly have been measured at $37^{\circ}C$ (body temperature) over a wide range of angular frequencies at an extremely small strain amplitude of 0.1 %. In this article, the linear viscoelastic behavior was reported in detail and then explained from a structural view-point of petroleum jelly and discussed in depth with respect to the consumer's requirements. Main findings obtained from this study can be summarized as follows : (1) The storage modulus is always greater than the loss modulus over an entire range of angular frequencies studied, meaning that the linear viscoelastic behavior of petroleum jelly is dominated by an elastic nature rather than a viscous nature. (2) Petroleum jelly shows a desirable linear viscoelastic behavior with respect to the consumer's requirements because it is undesirable for the product to flow down from the skin at an initial stage upon contact with the human skin. (3) A fractional derivative model shows an excellent applicability to describe a linear viscoelastic behavior of petroleum jelly. However, this model should be used with a special caution because there exists no physical meaning for the model parameters. (4) A modified form of the Cox-Merz rule gives a good ability to predict the relationship between steady shear flow properties (nonlinear behavior) and dynamic viscoelastic properties (linear behavior) for petroleum jelly.