• Title/Summary/Keyword: Linear formula

Search Result 454, Processing Time 0.026 seconds

Two phase driver manufacture of Hybrid type Linear Pulse Motor and estimation (하이브리드형 선형펄스모터의 2상 구동드라이버 제작 및 평가)

  • Kim, Dong-Hee;Ahn, Jae-Young;Kang, Geon-Il;Kim, Kwang-Heon;Lim, Young-Cheol;Park, Sung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.28-30
    • /
    • 2007
  • Need analysis of correct thrust for control performance improvement of HB-LPM (Hybrid type Linear Pulse Motor). It is difficult to analyze HB-LPM's thrust. In this paper, HB-LPM's thrust is expressed to mathematical expression. And it is proved validity of this numerical formula by thrust measurement system. Two phase driver is composed. It is verified validity of numerical formula that measure waveform of electric current and voltage that is supplied in each Phase. In this study, composed two phase drive driver, advantage of this IGBT element 6 by accumulated IPM module 1 Driver composition possible. That is, can economize 1 module. In other words, Driver composition is available by IGBT or metal oxide semiconductor field effect transistor element 4. This is economical big gains.

  • PDF

On the Relationship between $\varepsilon$-sensitivity Analysis and Sensitivity Analysis using an Optimal Basis

  • Park, Chan-Kyoo;Kim, Woo-Je;Park, Soondal
    • Management Science and Financial Engineering
    • /
    • v.10 no.2
    • /
    • pp.103-118
    • /
    • 2004
  • $\epsilon$-sensitivity analysis is a kind of methods for performing sensitivity analysis for linear programming. Its main advantage is that it can be directly applied for interior-point methods with a little computation. Although $\epsilon$-sensitivity analysis was proposed several years ago, there have been no studies on its relationship with other sensitivity analysis methods. In this paper, we discuss the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using an optimal basis. First. we present a property of $\epsilon$-sensitivity analysis, from which we derive a simplified formula for finding the characteristic region of $\epsilon$-sensitivity analysis. Next, using the simplified formula, we examine the relationship between $\epsilon$-sensitivity analysis and sensitivity analysis using optimal basis when an $\epsilon$-optimal solution is sufficiently close to an optimal extreme solution. We show that under primal nondegeneracy or dual non degeneracy of an optimal extreme solution, the characteristic region of $\epsilon$-sensitivity analysis converges to that of sensitivity analysis using an optimal basis. However, for the case of both primal and dual degeneracy, we present an example in which the characteristic region of $\epsilon$-sensitivity analysis is different from that of sensitivity analysis using an optimal basis.

Rayleigh-Ritz procedure for determination of the critical load of tapered columns

  • Marques, Liliana;Da Silva, Luis Simoes;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.45-58
    • /
    • 2014
  • EC3 provides several methodologies for the stability verification of members and frames. However, when dealing with the verification of non-uniform members in general, with tapered cross-section, irregular distribution of restraints, non-linear axis, castellated, etc., several difficulties are noted. Because there are yet no guidelines to overcome any of these issues, safety verification is conservative. In recent research from the authors of this paper, an Ayrton-Perry based procedure was proposed for the flexural buckling verification of web-tapered columns. However, in order to apply this procedure, Linear Buckling Analysis (LBA) of the tapered column must be performed for determination of the critical load. Because tapered members should lead to efficient structural solutions, it is therefore of major importance to provide simple and accurate formula for determination of the critical axial force of tapered columns. In this paper, firstly, the fourth order differential equation for non-uniform columns is derived. For the particular case of simply supported web-tapered columns subject to in-plane buckling, the Rayleigh-Ritz method is applied. Finally, and followed by a numerical parametric study, a formula for determination of the critical axial force of simply supported linearly web-tapered columns buckling in plane is proposed leading to differences up to 8% relatively to the LBA model.

A Study on the Hysteretic Model using Artificial Neural Network (인공신경망을 이용한 이력모델에 관한 연구)

  • 김호성;이승창;이학수;이원호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.387-394
    • /
    • 1999
  • Artificial Neural Network (ANN) is a computational model inspired by the structure and operations of the brain. It is massively parallel system consisting of a large number of highly interconnected and simple processing units. The purpose of this paper is to verify the applicability of ANN to predict experimental results through the use of measured experimental data. Although there have been accumulated data based on hysteretic characteristics of structural element with cyclic loading tests, it is difficult to directly apply them for the analysis of elastic and plastic response. Thus, simple models with mathematical formula such as Bi-Linear Model, Ramberg-Osgood Model, Degrading Tri Model, Takeda Model, Slip type Model, and etc, have been used. To verify the practicality and capability of this study, ANN is adapted to several models with mathematical formula using numerical data To show the efficiency of ANN in nonlinear analysis, it is important to determine the adequate input and output variables of hysteretic models and to minimize an error in ANN process. The application example is Beam-Column joint test using the ANN in modeling of the linear and nonlinear hysteretic behavior of structure.

  • PDF

Study on mapping of dark matter clustering from real space to redshift space

  • Zheng, Yi;Song, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2016
  • The mapping of dark matter clustering from real to redshift spaces introduces the anisotropic property to the measured density power spectrum in redshift space, known as the Redshift Space Distortion (hereafter RSD) effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to the indefinite cross correlations between the density and velocity fields, and the Finger-of-God (hereafter FoG) effect due to the randomness of the peculiar velocity field. Furthermore, the rigorous test of this mapping formula is contaminated by the unknown non-linearity of the density and velocity fields, including their auto- and cross-correlations, for calculating which our theoretical calculation breaks down beyond some scales. Whilst the full higher order polynomials remains unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the non-local FoG term being independent of the separation vector between two different points, and 2) the local FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the best fitted non-local FoG function is Gaussian, with only one scale-independent free parameter, and that our new mapping formulation accurately reproduces the observed power spectrum in redshift space at the smallest scales by far, up to k ~ 0.3 h/Mpc, considering the resolution of future experiments.

  • PDF

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

Analysis of Structural and Thermal Parameters for Evaluating Fire Resistance of Steel Beams (철골보의 내화시간 평가를 위한 구조 및 열적 변수해석)

  • Park, Han Na;Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • This paper proposes a versatile formula which can be used to evaluate the fire resistant time of steel beams under various design conditions. Towards this end, the key parameters which affect the fire performance of steel beams were first determined through thermo-mechanical considerations, and classified into two groups: structural parameters and thermal parameters. Then the degree of influence of each parameter on the fire performance was investigated through a fully coupled thermo-mechanical analysis up to the occurrence of run-away deflection. The accuracy of the numerical model used was verified using an available full-scale fire test before conducting an extensive parametric analysis. Multiple linear regression analysis was performed to obtain the formula which can be used to predict the fire resistance time of steel beams under various design conditions. The statistical analysis showed that the proposed formula is very robust. The application of the formula in practical fire design under the current code was illustrated in detail. The economy and other advantages of the proposed formula were clearly shown.

Growth in Infants with Cow's Milk Protein Allergy Fed an Amino Acid-Based Formula

  • Vandenplas, Yvan;Dupont, Christophe;Eigenmann, Philippe;Heine, Ralf G.;Host, Arne;Jarvi, Anette;Kuitunen, Mikael;Mukherjee, Rajat;Ribes-Koninckx, Carmen;Szajewska, Hania;Berg, Andrea von;Zhao, Zheng-Yan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.4
    • /
    • pp.392-402
    • /
    • 2021
  • Purpose: The present study assessed the role of an amino acid-based formula (AAF) in the growth of infants with cow's milk protein allergy (CMPA). Methods: Non-breastfed, term infants aged 0-6 months with symptoms suggestive of CMPA were recruited from 10 pediatric centers in China. After enrollment, infants were started on AAF for two weeks, followed by an open food challenge (OFC) with cow's milk-based formula (CMF). Infants with confirmed CMPA remained on AAF until 9 months of age, in conjunction with a cow's milk protein-free complementary diet. Body weight, length, and head circumference were measured at enrollment and 9 months of age. Measurements were converted to weight-for-age, length-for-age, and head circumference-for-age Z scores (WAZ, LAZ, HCAZ), based on the World Health Organization growth reference. Results: Of 254 infants (median age 16.1 weeks, 50.9% male), 218 (85.8%) were diagnosed with non-IgE-mediated CMPA, 33 (13.0%) tolerated CMF, and 3 (1.2%) did not complete the OFC. The mean WAZ decreased from 0.119 to -0.029 between birth and enrollment (p=0.067), with significant catch-up growth to 0.178 at 9 months of age (p=0.012) while being fed the AAF. There were no significant changes in LAZ (0.400 vs. 0.552; p=0.214) or HCAZ (-0.356 vs. -0.284; p=0.705) from the time of enrollment to age 9 months, suggesting normal linear and head growth velocity. Conclusion: The amino acid-based study formula, in conjunction with a cow's milk proteinfree complementary diet, supported normal growth till 9 months of age in a cohort of Chinese infants with challenge-confirmed non-IgE-mediated CMPA.

Efficiency of Utilization of Linear Programming in Determinining the Feed Formulas -As compared with the conventional method - (사료배합을 위한 선형계획법의 이용효과에 관한 연구)

  • 민병준
    • Korean Journal of Poultry Science
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 1981
  • This study was conducted to investigate how much total feed cost can be curtailed by the application of linear programming compared with the conventional hand calculating method in determining the feed formula in feed mill. Data were collected from a feed mill producing 19 different kinds of feed and having capacity of producing 5,000 tons of feed a month. According to the results of analysis, the least-cost feed formulation by linear programming showed a decrease of 4,793,172 won monthly in total feed cost as compared with the conventional hand calculating method. But, to confirm the results of this study, it is necessary to conduct further emperical studies.

  • PDF

New Algorithm for Recursive Estimation in Linear Discrete-Time Systems with Unknown Parameters

  • Shin Vladimir;Ahn Jun-Il;Kim Du-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.456-465
    • /
    • 2006
  • The problem of recursive filtering far linear discrete-time systems with uncertainties is considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion formula, which represents an optimal mean-square linear combination of local Kalman estimates with weights depending on cross-covariances between local filtering errors. In contrast to the optimal weights, the suboptimal weights do not depend on current measurements, and thus the proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic oscillator motion and vehicle motion constrained to a plane.