• Title/Summary/Keyword: Linear feature

Search Result 782, Processing Time 0.032 seconds

Linear Feature Detection of Rectangular Object Area using Edge Tracing-based Algorithm (에지 트레이싱 기법을 이용한 사각형 물체의 선형 특징점 검출)

  • 오중원;한희일
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2092-2095
    • /
    • 2003
  • In this paper, we propose an algorithm to extract rectangular object area such 3s Data Matrix two-dimensional barcode using edge tracing-based linear feature detection. Hough transform is usually employed to detect lines of edge map. However, it requires parametric image space, and does not find the location of end points of the detected lines. Our algorithm detects end points of the detected lines using edge tracing and extracts object area using its shape information.

  • PDF

A Method for Deriving an Optimal Product Feature Configuration Considering Feature Interaction (상호작용을 고려한 최적의 제품휘처형상 도출 방법)

  • Lee, Kwanwoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Many product line engineering methods use the feature model to structure commonality and variability among products in terms of features and to derive a product feature configuration, which is the set of features required for the development of a product. Features to be selected during product derivation are mainly determined based on the quality attributes required for a product. Most methods published so far derived an optimal product feature configuration through linear co-relationship between features and quality attributes. However, the co-relationship between features and quality attributes can be formulated as a non-linear function because of feature interactions. This paper proposes a method that derives an optimal product feature configuration considering feature interactions. Four product line cases are used to validate the proposed methods.

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

Transformation Technique for Null Space-Based Linear Discriminant Analysis with Lagrange Method (라그랑지 기법을 쓴 영 공간 기반 선형 판별 분석법의 변형 기법)

  • Hou, Yuxi;Min, Hwang-Ki;Song, Iickho;Choi, Myeong Soo;Park, Sun;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.208-212
    • /
    • 2013
  • Due to the singularity of the within-class scatter, linear discriminant analysis (LDA) becomes ill-posed for small sample size (SSS) problems. An extension of LDA, the null space-based LDA (NLDA) provides good discriminant performances for SSS problems. In this paper, by applying the Lagrange technique, the procedure of transforming the problem of finding the feature extractor of NLDA into a linear equation problem is derived.

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

Face Image Synthesis using Nonlinear Manifold Learning (비선형 매니폴드 학습을 이용한 얼굴 이미지 합성)

  • 조은옥;김대진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.182-188
    • /
    • 2004
  • This paper proposes to synthesize facial images from a few parameters for the pose and the expression of their constituent components. This parameterization makes the representation, storage, and transmission of face images effective. But it is difficult to parameterize facial images because variations of face images show a complicated nonlinear manifold in high-dimensional data space. To tackle this problem, we use an LLE (Locally Linear Embedding) technique for a good representation of face images, where the relationship among face images is preserving well and the projected manifold into the reduced feature space becomes smoother and more continuous. Next, we apply a snake model to estimate face feature values in the reduced feature space that corresponds to a specific pose and/or expression parameter. Finally, a synthetic face image is obtained from an interpolation of several neighboring face images in the vicinity of the estimated feature value. Experimental results show that the proposed method shows a negligible overlapping effect and creates an accurate and consistent synthetic face images with respect to changes of pose and/or expression parameters.

Improvement in Supervector Linear Kernel SVM for Speaker Identification Using Feature Enhancement and Training Length Adjustment (특징 강화 기법과 학습 데이터 길이 조절에 의한 Supervector Linear Kernel SVM 화자식별 개선)

  • So, Byung-Min;Kim, Kyung-Wha;Kim, Min-Seok;Yang, Il-Ho;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2011
  • In this paper, we propose a new method to improve the performance of supervector linear kernel SVM (Support Vector Machine) for speaker identification. This method is based on splitting one training datum into several pieces of utterances. We use four different databases for evaluating performance and use PCA (Principal Component Analysis), GKPCA (Greedy Kernel PCA) and KMDA (Kernel Multimodal Discriminant Analysis) for feature enhancement. As a result, the proposed method shows improved performance for speaker identification using supervector linear kernel SVM.

A Facial Feature Area Extraction Method for Improving Face Recognition Rate in Camera Image (일반 카메라 영상에서의 얼굴 인식률 향상을 위한 얼굴 특징 영역 추출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.251-260
    • /
    • 2016
  • Face recognition is a technology to extract feature from a facial image, learn the features through various algorithms, and recognize a person by comparing the learned data with feature of a new facial image. Especially, in order to improve the rate of face recognition, face recognition requires various processing methods. In the training stage of face recognition, feature should be extracted from a facial image. As for the existing method of extracting facial feature, linear discriminant analysis (LDA) is being mainly used. The LDA method is to express a facial image with dots on the high-dimensional space, and extract facial feature to distinguish a person by analyzing the class information and the distribution of dots. As the position of a dot is determined by pixel values of a facial image on the high-dimensional space, if unnecessary areas or frequently changing areas are included on a facial image, incorrect facial feature could be extracted by LDA. Especially, if a camera image is used for face recognition, the size of a face could vary with the distance between the face and the camera, deteriorating the rate of face recognition. Thus, in order to solve this problem, this paper detected a facial area by using a camera, removed unnecessary areas using the facial feature area calculated via a Gabor filter, and normalized the size of the facial area. Facial feature were extracted through LDA using the normalized facial image and were learned through the artificial neural network for face recognition. As a result, it was possible to improve the rate of face recognition by approx. 13% compared to the existing face recognition method including unnecessary areas.

Comparative Analysis of Dimensionality Reduction Techniques for Advanced Ransomware Detection with Machine Learning (기계학습 기반 랜섬웨어 공격 탐지를 위한 효과적인 특성 추출기법 비교분석)

  • Kim Han Seok;Lee Soo Jin
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.117-123
    • /
    • 2023
  • To detect advanced ransomware attacks with machine learning-based models, the classification model must train learning data with high-dimensional feature space. And in this case, a 'curse of dimension' phenomenon is likely to occur. Therefore, dimensionality reduction of features must be preceded in order to increase the accuracy of the learning model and improve the execution speed while avoiding the 'curse of dimension' phenomenon. In this paper, we conducted classification of ransomware by applying three machine learning models and two feature extraction techniques to two datasets with extremely different dimensions of feature space. As a result of the experiment, the feature dimensionality reduction techniques did not significantly affect the performance improvement in binary classification, and it was the same even when the dimension of featurespace was small in multi-class clasification. However, when the dataset had high-dimensional feature space, LDA(Linear Discriminant Analysis) showed quite excellent performance.

A Study on Speech Recognition using Vocal Tract Area Function (성도 면적 함수를 이용한 음성 인식에 관한 연구)

  • 송제혁;김동준
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.345-352
    • /
    • 1995
  • The LPC cepstrum coefficients, which are an acoustic features of speech signal, have been widely used as the feature parameter for various speech recognition systems and showed good performance. The vocal tract area function is a kind of articulatory feature, which is related with the physiological mechanism of speech production. This paper proposes the vocal tract area function as an alternative feature parameter for speech recognition. The linear predictive analysis using Burg algorithm and the vector quantization are performed. Then, recognition experiments for 5 Korean vowels and 10 digits are executed using the conventional LPC cepstrum coefficients and the vocal tract area function. The recognitions using the area function showed the slightly better results than those using the conventional LPC cepstrum coefficients.

  • PDF