• Title/Summary/Keyword: Linear codes

Search Result 293, Processing Time 0.092 seconds

Effect of Stiffness and Strength Degrading Model on Evaluating the Response Modification Factor (강성 및 강도저하 모델이 반응수정계수 산정에 미치는 영향 평가)

  • 오영훈;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.25-32
    • /
    • 1998
  • Most recent seismic design codes include Response Modification Factor(RMF) for determining equivalent lateral forces. The RMF is used to reduce the linear elastic design spectrum to account for the energy dissipation capacity, overstrength and damping of the structure. In this study the RMF is defined as the ratio of the absolute maximum linear elastic base shear to the absolute maximum nonlinear base shear of a structure subject to the same earthquake accelerogram. This study investigates the effect of hysteretic model, as well as target ductility ratio and natural period on duct based RMF using nonlinear dynamic analyses of the SDOF systems. Special emphasis is given to the effects of the hysteretic characteristics such as strength deterioration and stiffness degradation. Results indicate that RMFs are dependent on ductility, period and hysteretic model.

  • PDF

Linear buckling analysis of welded girder webs with variable thickness

  • Maiorana, Emanuele;Pellegrino, Carlo
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.505-524
    • /
    • 2011
  • Steel girder web panels have been subjected in recent decades, to a number of experimental and numerical studies but the mechanisms that regulate the behaviour of the panels composed by two subpanels with different thickness were not deeply studied. Furthermore specific design rules regarding the estimation of the buckling coefficient for panels with variable thickness are not included in the codes even if this is a common situation particularly for steel bridge girders with beams having significant height. In this framework,this work aims to investigate buckling behaviour of steel beams with webs composed of panels with different thicknesses subjected to both in-plane axial compression and bending moment and gives some simplified equations for the estimation of the buckling coefficient.

Development of Look Ahead Interpolation Algorithm For PC Based CNC System (PC기반CNC시스템을 위한 Look Ahead 보간 알고리즘 개발)

  • Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.30-37
    • /
    • 2015
  • This research aims to develop Look Ahead position interpolation algorithm for small size CNC machine controlled by PC based controller. Look Ahead scheme can process a bundle of CNC's linear interpolation commands simultaneously, which reduces acceleration and deceleration time within single linear interpolation command. The algorithm is derived as simple analytical form which can be adapted to PC based CNC system by C language programming. The performance of the algorithm was verified by tail stock machining G codes experimentally. The average traverse speed of the CNC machine was increased by 27.5% and the total traverse time also reduced by 27.2% with the Look Ahead scheme.

A Design of Turbo Decoder for 3GPP using Log-MAP Algorithm (Log-MAP을 사용한 3GPP용 터보 복호기의 설계)

  • Kang, Heyng-Goo;Jeon, Heung-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.533-536
    • /
    • 2005
  • MAP algorithm is known for optimal decoding algorithm of Turbo codes, but it has very large computational complexity and delay. Generally log-MAP algorithm is used in order to overcome the defect. In this paper we propose modified scheme of the state metric calculation block which can improve the computation speed in log-MAP decoder and simple linear offset unit without using LUT. The simulation results show that the operation speed of the proposed scheme is improved as compared with that of the past scheme.

  • PDF

Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of Rudbar Lorestan pumped storage power plant, Iran

  • Bandpey, Abbas Kamali;Shahriar, Kourush;Sharifzadeh, Mostafa;Marefvand, Parviz
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-34
    • /
    • 2018
  • Discontinuities considerably affect the mechanical and hydraulic properties of rock mass. These properties of the rock mass are influenced by the geometry of the discontinuities to a great extent. This paper aims to render an account of the geometrical parameters of several discontinuity sets related to the surrounding rock mass of Rudbar Lorestan Pumped Storage Power Plant powerhouse cavern making use of the linear and areal (circular and rectangular) sampling methods. Taking into consideration quite a large quantity of scanline and the window samplings used in this research, it was realized that the areal sampling methods are more time consuming and cost-effective than the linear methods. Having corrected the biases of the geometrical properties of the discontinuities, density (areal and volumetric) as well as the linear, areal and volumetric intensity accompanied by the other properties related to four sets of discontinuities were computed. There is an acceptable difference among the mean trace lengths measured using two linear and areal methods for the two joint sets. A 3D discrete fracture network generation code (3DFAM) has been developed to model the fracture network based on the mapped data. The code has been validated on the basis of numerous geometrical characteristics computed by use of the linear, areal sampling methods and volumetric method. Results of the linear sampling method have significant variations. So, the areal and volumetric methods are more efficient than the linear method and they are more appropriate for validation of 3D DFN (Discrete Fracture Network) codes.

Constant Time Algorithm for Alignment of Unaligned Linear Quadtrees on RMESH (RMESH구조에서 unaligned 선형 사진트리의 alignment를 위한 상수시간 알고리즘)

  • 김경훈;우진운
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.10-18
    • /
    • 2004
  • Quadtree, which is a hierarchical data structure, is a very important data structure to represent binary images. The linear quadtree representation as a way to store a quadtree is efficient to save space compared with other representations. Therefore, it has been widely studied to develop efficient algorithms to execute operations related with quadtrees. The operations of unaligned linear quadtrees, which are operations among the linear quadtrees with different origin, are able to perform the translated or rotated images efficiently. And this operations requires alignment of the linear quadtrees. In this paper, we present an efficient algorithm to perform alignment of unaligned linear quadtrees, using three-dimensional $n{\pm}n{\pm}n$ processors on RMESH(Reconfigurable MESH). This algorithm has constant-time complexity by using efficient basic operations to route the locational codes of quardtree on the hierarchical structure of $n{\pm}n{\pm}n$ RMESH.

Constant Time RMESH Algorithm for Linear Translation of Linear Quadtrees (선형 사진트리의 선형이동을 위한 상수시간 RMESH 알고리즘)

  • Kim, Kyung-Hoon;Woo, Jin-Woon
    • The KIPS Transactions:PartA
    • /
    • v.10A no.3
    • /
    • pp.207-214
    • /
    • 2003
  • Quadtree, which is a hierarchical data structure, is a very important data structure to represent binary images. The linear quadtree representation as a way to store a quadtree is efficient to save space compared with other representations. Therefore, it has been widely studied to develop efficient algorithms to execute operations related with quadtrees. The linear translation is one of important operations in image processing, which moves the image by a given distance. In this paper, we present an algorithm to perform the linear translation of binary images represented by quadtrees, using three-dimensional $n{\times}n{\times}n$ processors on RMESH (Reconfigurable MESH). This algorithm has constant-time complexity by using efficient basic operations to route the locational codes of quardtree on the hierarchical structure of n${\times}$n${\times}$n RMESH.

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

Estimation of Convolutional Interleaver Parameters using Linear Characteristics of Channel Codes (채널 부호의 선형성을 이용한 길쌈 인터리버의 파라미터 추정)

  • Lee, Ju-Byung;Jeong, Jeong-Hoon;Kim, Sang-Goo;Kim, Tak-Kyu;Yoon, Dong-Weon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.15-23
    • /
    • 2011
  • An interleaver rearranges a channel-encoded data in the symbol unit to spread burst errors occurred in channels into random errors. Thus, the interleaving process makes it difficult for a receiver, who does not have information of the interleaver parameters used in the transmitter, to de-interleave an unknown interleaved signal. Recently, various researches on the reconstruction of an unknown interleaved signal have been studied in many places of literature by estimating the interleaver parameters. They, however, have been mainly focused on the estimation of the block interleaver parameters required to reconstruct the de-interleaver. In this paper, as an extension of the previous researches, we estimate the convolutional interleaver parameters, e.g., the number of shift registers, a shift register depth, and a codeword length, required to de-interleave the unknown data stream, and propose the de-interleaving procedure by reconstructing the de-interleaver.

Response modification factors of concrete bridges with different bearing conditions

  • Zahrai, Seyed Mehdi;Khorraminejad, Amir;Sedaghati, Parshan
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • One of the shortcomings of seismic bridge design codes is the lack of clarity in defining the role of different seismic isolation systems with linear or nonlinear behavior in terms of R-factor. For example, based on AASHTO guide specifications for seismic isolation design, R-factor for all substructure elements of isolated bridges should be half of those expressed in the AASHTO standard specifications for highway bridges (i.e., R=3 for single columns and R=5 for multiple column bent) but not less than 1.50. However, no distinction is made between two commonly used types of seismic isolation devices, i.e., elastomeric rubber bearing (ERB) with linear behavior, and lead rubber bearing (LRB) with nonlinear behavior. In this paper, five existing bridges located in Iran with two types of deck-pier connection including ERB and LRB isolators, and two bridge models with monolithic deck-pier connection are developed and their R-factor values are assessed based on the Uang's method. The average R-factors for the bridges with ERB isolators are calculated as 3.89 and 4.91 in the longitudinal and transverse directions, respectively, which are not in consonance with the AASHTO guide specifications for seismic isolation design (i.e., R=3/2=1.5 for the longitudinal direction and R=5/2=2.5 for the transverse direction). This is a clear indicator that the code-prescribed R-factors are conservative for typical bridges with ERB isolators. Also for the bridges with LRB isolators, the average computed R-factors equal 1.652 and 2.232 in the longitudinal and transverse directions, respectively, which are in a good agreement with the code-specified R-factor values. Moreover, in the bridges with monolithic deck-pier connection, the average R-factor in the longitudinal direction is obtained as 2.92 which is close to the specified R-factor in the bridge design codes (i.e., 3), and in the transverse direction is obtained as 2.41 which is about half of the corresponding R-factor value in the specifications (i.e., 5).