• Title/Summary/Keyword: Linear classifier

Search Result 179, Processing Time 0.021 seconds

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier (HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현)

  • Kim, Jin-Yul;Park, Chan-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.

A Study on Data Classification of Raman OIM Hyperspectral Bone Data

  • Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1010-1019
    • /
    • 2011
  • This was a preliminary research for the goal of understanding between internal structure of Osteogenesis Imperfecta Murine (OIM) bone and its fragility. 54 hyperspectral bone data sets were captured by using JASCO 2000 Raman spectrometer at UMKC-CRISP (University of Missouri-Kansas City Center for Research on Interfacial Structure and Properties). Each data set consists of 1,091 data points from 9 OIM bones. The original captured hyperspectral data sets were noisy and base-lined ones. We removed the noise and corrected the base-lined data for the final efficient classification. High dimensional Raman hyperspectral data on OIM bones was reduced by Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) and efficiently classified for the first time. We confirmed OIM bones could be classified such as strong, middle and weak one by using the coefficients of their PCA or LDA. Through experiment, we investigated the efficiency of classification on the reduced OIM bone data by the Bayesian classifier and K -Nearest Neighbor (K-NN) classifier. As the experimental result, the case of LDA reduction showed higher classification performance than that of PCA reduction in the two classifiers. K-NN classifier represented better classification rate, compared with Bayesian classifier. The classification performance of K-NN was about 92.6% in case of LDA.

Design of Robust Face Recognition Pattern Classifier Using Interval Type-2 RBF Neural Networks Based on Census Transform Method (Interval Type-2 RBF 신경회로망 기반 CT 기법을 이용한 강인한 얼굴인식 패턴 분류기 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.755-765
    • /
    • 2015
  • This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.

Implementation of ML Algorithm for Mung Bean Classification using Smart Phone

  • Almutairi, Mubarak;Mutiullah, Mutiullah;Munir, Kashif;Hashmi, Shadab Alam
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.89-96
    • /
    • 2021
  • This work is an extension of my work presented a robust and economically efficient method for the Discrimination of four Mung-Beans [1] varieties based on quantitative parameters. Due to the advancement of technology, users try to find the solutions to their daily life problems using smartphones but still for computing power and memory. Hence, there is a need to find the best classifier to classify the Mung-Beans using already suggested features in previous work with minimum memory requirements and computational power. To achieve this study's goal, we take the experiments on various supervised classifiers with simple architecture and calculations and give the robust performance on the most relevant 10 suggested features selected by Fisher Co-efficient, Probability of Error, Mutual Information, and wavelet features. After the analysis, we replace the Artificial Neural Network and Deep learning with a classifier that gives approximately the same classification results as the above classifier but is efficient in terms of resources and time complexity. This classifier is easily implemented in the smartphone environment.

Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy (라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계)

  • Kim, Eun-Hu;Bae, Jong-Soo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.

Analysis for Linear Type Classification Scheme on Holstein Cows in Korea (국내 홀스타인종 젖소의 선형형질의 점수제 분석)

  • Choi, Te-Jeong;Cho, Kwang-Hyun;Lee, Ki-Hwan;Sang, Byeong-Chan
    • Journal of Animal Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.97-104
    • /
    • 2009
  • Complement of test standard, evaluation methods and models are needed to improve national competitiveness and to exchange superior genetic resources through the comparison of genetic evaluation score among nations in dairy cattle. Therefore, this study was conducted for the application of international standard to Korea considering domestic circumstance by changing linear-classification test score system of 50 classes which is currently used in Korea to system of 9 classes which is used in advanced nations of dairy. 15,230 of holstein cow linear type records with first parity records for the fifteen linear type and one total score from 2001 to 2006 and pedigree data which were collected by the Korean Animal Improvement Association were used in this study. Population classified by 9 levels was more normal distributed than 50 levels. Correlation coefficients between 50 and 9 score system showed over 0.98 by each classification scheme. Therefore, the 50 point system can be substituted with 9 point system due to their highly positive correlation. However, scores in all traits were still very contingent on classifier under the 9 point system (p<0.001), and F values between foot angle and front teat attachment showed high fluctuation depending on classifier. It means that subjective opinions of classifier would influence on linear type score as ever even if class scheme transformed to system of 9 class. Therefore, the relevance of transformation to the 9 point system should be assessed after analyses about various environmental factors.

Random Forest Based Abnormal ECG Dichotomization using Linear and Nonlinear Feature Extraction (선형-비선형 특징추출에 의한 비정상 심전도 신호의 랜덤포레스트 기반 분류)

  • Kim, Hye-Jin;Kim, Byeong-Nam;Jang, Won-Seuk;Yoo, Sun-K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.61-67
    • /
    • 2016
  • This paper presented a method for random forest based the arrhythmia classification using both heart rate (HR) and heart rate variability (HRV) features. We analyzed the MIT-BIH arrhythmia database which contains half-hour ECG recorded from 48 subjects. This study included not only the linear features but also non-linear features for the improvement of classification performance. We classified abnormal ECG using mean_NN (mean of heart rate), SD1/SD2 (geometrical feature of poincare HRV plot), SE (spectral entropy), pNN100 (percentage of a heart rate longer than 100 ms) affecting accurate classification among combined of linear and nonlinear features. We compared our proposed method with Neural Networks to evaluate the accuracy of the algorithm. When we used the features extracted from the HRV as an input variable for classifier, random forest used only the most contributed variable for classification unlike the neural networks. The characteristics of random forest enable the dimensionality reduction of the input variables, increase a efficiency of classifier and can be obtained faster, 11.1% higher accuracy than the neural networks.

Real-time BCI for imagery movement and Classification for uncued EEG signal (상상 움직임에 대한 실시간 뇌전도 뇌 컴퓨터 상호작용, 큐 없는 상상 움직임에서의 뇌 신호 분류)

  • Kang, Sung-Wook;Jun, Sung-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.642-645
    • /
    • 2009
  • Brain Computer Interface (BCI) is a communication pathway between devices (computers) and human brain. It treats brain signals in real-time basis and discriminates some information of what human brain is doing. In this work, we develop a EEG BCI system using a feature extraction such as common spatial pattern (CSP) and a classifier using Fisher linear discriminant analysis (FLDA). Two-class EEG motor imagery movement datasets with both cued and uncued are tested to verify its feasibility.

  • PDF

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.