• 제목/요약/키워드: Linear behavior

검색결과 2,505건 처리시간 0.036초

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

전력계통 동기발전기의 T-S Fuzzy 모델링 (T-S Fuzzy Modeling of Synchronous Generator in a Power System)

  • 이희진;백승묵;박정욱
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1642-1651
    • /
    • 2008
  • The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.

기하학적 비선형성을 갖는 평판의 동특성 해석 (Dynamic Analysis of a Geometrical Non-linear Plate)

  • 임재훈;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.498-503
    • /
    • 2003
  • Dynamic analysis of a plate with non-linearity due to large deformation is performed in the study. There have been many researches about the non-linear dynamic behavior of plates examining by means of theoretical or numerical analyses. But it is important how exactly model the actual system. In this respect, the Continuous-Time system identification technique is used to generate non-linear models, for stiffness and damping terms, to explain the observed behaviors with single mode assumptions for the simplicity after comparing the experimental results with the numerical results of a linear plate model.

  • PDF

회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 선형 좌굴해석 (Linear Buckling Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F.)

  • 최창근;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.258-265
    • /
    • 1998
  • Application of the flat shell element with drilling D.O.F to linear buckling analysis of thin-walled structures is presented in this paper. The shell element has been developed basically by combining a membrane element with drilling D.O.F. and Mindlin plate bending element. Thus, the shell element possesses six degrees-of-freedom per node which, in addition to improvement of the element behavior, permits an easy connection to other six degrees-of-freedom per node elements(CLS, Choi and Lee, 1995). Accordingly, structures like folded plate and stiffened shell structure, for which it is hard to find the analytical solutions, can be analyzed using these developed flat shell elements. In this paper, linear buckling analysis of thin-walled structures like folded plate structures using the shell elements(CLS) with drilling D.O.F. to be formulated and then fulfilled. Subsequently, buckling modes and the critical loads can be output. Finally. finite element solutions for linear buckling analysis of folded plate structures are compared with available analytic solutions and other researcher's results.

  • PDF

Modeling of a Transfer Function for Frequency Controlled Resonant Inverters

  • Han, Mu-Ho;Lee, Chi-Hwan;Kwon, Woo-Hyun
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.567-574
    • /
    • 2009
  • A linear transfer function for the output current control of frequency-controlled resonant inverters is proposed in this paper. The circuit of resonant inverters can be transformed into two coupled circuits through the complex phasor transform. The circuits consist of cross-coupled power sources and passive elements. The circuits are used to induce the state space equation, which is transformed into the $4^{th}$ order cross-coupled transfer function. The $4^{th}$ order cross-coupled transfer function is modeled into a $2^{nd}$ order linear transfer function based on a behavior analysis of the pole and zero locations that facilitate a simple and intuitive linear transfer function. The feasibility and validity of the proposed linear transfer function were verified by simulation and experiment.

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

초정밀 선형 모터의 진동 분석 (Vibration Analysis of Super-Precision Linear Motors)

  • 설진수;이우영;임경화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.840-845
    • /
    • 2004
  • Development of the linear motors is recently required to control a high-speed and high-resolution in the high-integrated and speed process industry. This paper presents vibration analyses as well as measurement standards of the newly developed linear motors through analyzing the vibration characteristics of the advanced products. Vibration experiments are conducted for identifying vibration level during operation. They are also included in the modal test to analyze dynamic characteristics. Analytic data using Finite Element Method (FEM) are compared with the results of the modal. The FEM and experiments make it possible to understand these characteristics. Further, through computer simulation for the behavior of moving part to be vibration source, the best acceleration pattern of moving part movement can be verified to achieve effective moving part positioning and reduce the vibration due to moving part movement.

  • PDF

Arrival direction effects of travelling waves on nonlinear seismic response of arch dams

  • Akkose, Mehmet
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.179-199
    • /
    • 2016
  • The aim of this study is to investigate arrival direction effects of travelling waves on non-linear seismic response of arch dams. It is evident that the seismic waves may reach on the dam site from any direction. Therefore, this study considers the seismic waves arrive to the dam site with different angles, ${\theta}=0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $90^{\circ}$ for non-linear analysis of arch dam-water-foundation interaction system. The N-S, E-W and vertical component of the Erzincan earthquake, on March 13, 1992, is used as the ground motion. Dam-water-foundation interaction is defined by Lagrangian approach in which a step-by-step integration technique is employed. The stress-strain behavior of the dam concrete is idealized using three-dimensional Drucker-Prager model based on associated flow rule assumption. The program NONSAP is employed in response calculations. The time-history of crest displacements and stresses of the dam are presented. The results obtained from non-linear analyses are compared with that of linear analyses.

Efficiency of Exponential Deperm Protocol

  • Kim, Yongmin;Kim, Young-Hak;Shin, Kwang-Ho
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.326-330
    • /
    • 2013
  • Magnetic treatment of surface vessels and submarines (Deperm) is required to camouflage them against magnetic detection from enemy marine force. So far, deperm has been accomplished by applying an alternating magnetic field of which amplitude decreases linearly. However, the reduction of the residual flux density in the direction of magnetic field is not linear in the case of the linear protocol, since the ferromagnetic material used to construct a surface vessel, mainly Fe-C, shows a nonlinear behavior in an alternating magnetic field. This is one of main reasons to make an ordinary deperm protocol inefficient. In this paper, we propose the exponential deperming protocol and compare the exponential protocol to conventional linear protocol within the framework of deperm performance. We found out that step number could be reduced in the exponential protocol compare with in the linear protocol, because the larger numbers of deperm steps are dedicated in the irreversible domain process region on the magnetic hysteresis.