• Title/Summary/Keyword: Linear behavior

Search Result 2,505, Processing Time 0.032 seconds

Analyses of Non-linear Behavior of Axisymmetric Structure by Finite Element Method (유한요소법을 이용한 축대칭 구조물의 비선형 거동해석)

  • 구영덕;민경탁
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • A finite element method is programmed to analyse the nonlinear behavior of axisymmetric structures. The lst order Mindlin shell theory which takes into account the transversal shear deformation is used to formulate a conical two node element with six degrees of freedom. To evade the shear locking phenomenon which arises in Mindlin type element when the effect of shear deformation tends to zero, the reduced integration of one point Gauss Quadrature at the center of element is employed. This method is the Updated Lagrangian formulation which refers the variables to the state of the most recent iteration. The solution is searched by Newton-Raphson iteration method. The tangent matrix of this method is obtained by a finite difference method by perturbating the degrees of freedom with small values. For the moment this program is limited to the analyses of non-linear elastic problems. For structures which could have elastic stability problem, the calculation is controled by displacement.

  • PDF

Electro-Catalytic Behavior of an Antiarrhythmic Drug, Procainamide and its Electro-Analytical Applications

  • Abbar, Jyothi C.;Meti, Manjunath D.;Nandibewoor, Sharanappa T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.292-300
    • /
    • 2018
  • The electrocatalytic oxidative behavior of an antiarrhythmic drug, procainamide hydrochloride (PAH) at the gold electrode surface has been examined using different voltammetric methods like cyclic, linear-sweep and differential pulse voltammetry. Voltammograms obtained in this study reveal that the electrode exhibit excellent electrocatalytic activity towards oxidation of the drug. The parameters that can affect the peak current at different pH, scan rate and concentration were evaluated. The number of electrons transferred was calculated. The current displayed a wide linear response ranging from 0.5 to $30.0{\mu}M$ with a limit of detection of 56.4 nM. The impact of potential interfering agents was also studied. The electrode displayed wide advantages such as simple sample preparation, appreciable repeatability, reproducibility and also high sensitivity. Furthermore, the feasibility of the proposed method was successfully demonstrated by determining PAH in the spiked human biological sample.

Particle-based Numerical Modeling of Linear Viscoelastic Materials using MPM based on FEM for Taylor Impact Simulations

  • Kim, See Jo
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2018
  • Taylor rod impact tests have been the subject of many theoretical and experimental investigations. This paper discusses the numerical methods for simulating the Taylor impact test, which is widely used to obtain constitutive equations and failure conditions under high-velocity collisions of materials. With this in mind, a particle-based MPM (material point method) for linear viscoelastic solid materials was implemented, and MPM simulations for viscoelastic deformation behavior were numerically verified and confirmed by comparing the MPM and FEM results. In addition, this modeling and numerical approach could be extended to more complex viscoelastic models for basic understanding and to analyze the deformation and fracture behavior of more complicated viscoelastic material systems.

Filtered-x LMS Algorithm for noise and vibration control system (잡음 및 진동제어시스템을 위한 Filtered -x LMS 알고리즘)

  • kim, soo-yong;Jee, suk-kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.697-702
    • /
    • 2009
  • Filtered-x LMS algorithm maybe the most popular control algorithm used in DSP implementations of active noise and vibration control system. The algorithm converges on a timescale comparable to the response time of the system to be controlled, and is found to be very robust. If the pure tone reference signal is synchronously sampled, it is found that the behavior of the adaptive system can be completely described by a matrix of linear, time invariant, transfer functions. This is used to explain the behavior observed in simulations of a simplified single input, single output adaptive system, which retains many of the properties of the multichannel algorithm.

  • PDF

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Nazemnezhad, Reza;Rabiei, Mohaddese;Shafa'at, Pouyan;Eshaghi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.535-547
    • /
    • 2021
  • This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

Reliability based seismic fragility analysis of bridge

  • Kia, M.;Bayat, M.;Emadi, A.;Kutanaei, S. Soleimani;Ahmadi, H.R
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • In this paper, a reliability-based approach has been implemented to develop seismic analytical fragility curves of highway bridges. A typical bridge class of the Central and South-eastern United States (CSUS) region was selected. Detailed finite element modelling is presented and Incremental Dynamic Analysis (IDA) is used to capture the behavior of the bridge from linear to nonlinear behavior. Bayesian linear regression method is used to define the demand model. A reliability approach is implemented to generate the analytical fragility curves and the proposed approach is compared with the conventional fragility analysis procedure.

Bridges dynamic analysis under earthquakes using a smart algorithm

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This work addresses the optimization controller design problem combining the AI evolution bat (EB) optimization algorithm with a fuzzy controller in the practical application of a reinforced concrete frame structure. This article explores the use of an intelligent EB strategy to reduce the dynamic response of Lead Rubber Bearing (LRB) composite reinforced concrete frame structures. Recently developed control units for plant structures, such as hybrid systems and semi-active systems, have inherently non-linear properties. Therefore, it is necessary to develop non-linear control methods. Based on the relaxation method, the nonlinear structural system can be stabilized by properly adjusting the parameters. Therefore, the behavior of a closed-loop system can be accurately predicted by determining the behavior of a closed-loop system. The performance and durability of the proposed control method are demonstrated by numerical simulations. The simulation results show that the proposed method is a viable and feasible control strategy for seismically tuned composite reinforced concrete frame structures.

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R.;Manoj Kumar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.287-299
    • /
    • 2023
  • This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.

Analytical Modeling of Seismic Isolators at Cold Temperature Considering Strain Rate Effects (변형도 속도효과를 고려한 저온에서의 면진장치 해석모델)

  • 김대곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.97-105
    • /
    • 2001
  • Rubber bearings may exhibit a significant cold temperature effect and some velocity dependency(strain rate effect). Both of these attributes which affect non-linear behavior must be accounted for when accurately modeling the bearings behavior, therefore, an analytical models is proposed to consider the effects of the cold temperature and strain rate on both rubber and lead. From the results of an experimental investigation where the frozen bearings were tested under lateral cyclic loading with constant axial load, a non-linear system identification with least squares procedure was applied to determine the material properties of rubber and lead. It is demonstrated that the proposed analytical model is able to simulate the reversed cyclic loading behavior of elastometric and lead-rubber bearings.

  • PDF

Non-linear Temperature Dependent Deformation Anaysis of CBGA Package Assembly Using Moir′e Interferometry (모아레 간섭계를 이용한 CBGA 패키지의 비선형 열변형 해석)

  • 주진원;한봉태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • Thermo-mechanical behavior of a ceramic ball grid array (CBGA) package assembly are characterized by high sensitive moire interferometry. Moir fringe patterns are recorded and analyzed at various temperatures in a temperature cycle. Thermal-history dependent analyses of global and local deformations are presented, and bending deformation (warpage) of the package and shear strain in the rightmost solder ball are discussed. A significant non-linear global behavior is documented due to stress relaxation at high temperature. Analysis of the solder interconnections reveals that inelastic deformation accumulates on only eutectic solder fillet region at high temperatures.

  • PDF