• Title/Summary/Keyword: Linear and nonlinear loads

Search Result 223, Processing Time 0.033 seconds

Prediction of the Strength and Vibration Safety of the 30ton Thrust Turbopump Turbine by Finite Element Analysis (30톤 추력급 터보펌프 터빈의 구조 강도 및 진동 해석을 통한 안정성 예측)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Lee, Kwan-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.20-28
    • /
    • 2004
  • Static and dynamic structural analyses of a turbine bladed-disk for a liquid rocket turbopump are performed to investigate the safety level of strength and vibration at design point. During operation, turbopump is exposed to various external loads. Therefore, the effects of them should be carefully considered and properly modeled. First, due to the high rotational speed of the turbopump, effects of centrifugal forces are considered in the structural analysis. Thermal load caused by severe temperature differences is also considered. A three dimensional finite element method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. From the analysis results, characteristics of stress distribution and vibration were thoroughly examined and investigated.

Vibrations of a taut horizontal cable subjected to axial support excitations considering nonlinear quasi-static responses

  • Jiang Yi;Yingqi Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.221-235
    • /
    • 2023
  • To calculate the vibrations of a tout cable subjected to axial support excitations, a nonlinear relationship of cable force and the support displacement under static situations are employed to depict the quasi-static vibration of the cable. The dynamic components of quasi-static vibration are inputted as "direct loads" to cause the parametric vibrations on the cable. Both the governing equations of motion and deformation compatibility for parametric vibrations are then derived, which indicates the high coupling of cable parametric force and deformation. Numerical solutions, based on the finite difference method, are put forward for the parametric vibrations, which is validated by the finite element method under periodic axial support excitations. For the quasi-static response, the shorter cables are more sensitive to support excitations than longer ones at small cable force. The quasi-static cable force makes the greatest contribution to the total cable force, but the parametric cable force is responsible for the occurrence of cable loosening at large excitation amplitudes. Moreover, this study also revealed that the traditional approach, assuming a linear relationship between quasi-static cable force and axial support displacement, would result in some great error of the cable parametric responses.

Nonlinear bending of multilayer functionally graded graphene-reinforced skew microplates under mechanical and thermal loads using FSDT and MCST: A study in large deformation

  • J. Jenabi;A.R. Nezamabadi;M. Karami Khorramabadi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.219-232
    • /
    • 2024
  • In current study, for the first time, Nonlinear Bending of a skew microplate made of a laminated composite strengthened with graphene nanosheets is investigated. A mixture of mechanical and thermal stresses is applied to the plate, and the reaction is analyzed using the First Shear Deformation Theory (FSDT). Since different percentages of graphene sheets are included in the multilayer structure of the composite, the characteristics of the composite are functionally graded throughout its thickness. Halpin-Tsai models are used to characterize mechanical qualities, whereas Schapery models are used to characterize thermal properties. The microplate's non-linear strain is first calculated by calculating the plate shear deformation and using the Green-Lagrange tensor and von Karman assumptions. Then the elements of the Couple and Cauchy stress tensors using the Modified Coupled Stress Theory (MCST) are derived. Next, using the Hamilton Principle, the microplate's governing equations and associated boundary conditions are calculated. The nonlinear differential equations are linearized by utilizing auxiliary variables in the nonlinear solution by applying the Frechet approach. The linearized equations are rectified via an iterative loop to precisely solve the problem. For this, the Differential Quadrature Method (DQM) is utilized, and the outcomes are shown for the basic support boundary condition. To ascertain the maximum values of microplate deflection for a range of circumstances-such as skew angles, volume fractions, configurations, temperatures, and length scales-a parametric analysis is carried out. To shed light on how the microplate behaves in these various circumstances, the resulting results are analyzed.

Book Remodeling Analysis of Femur Using Hybrid Beam Theory (보 이론을 이용한 대퇴골 재생성의 해석)

  • Kim, Seung-Jong;Jeong, Jae-Yeon;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.329-337
    • /
    • 2000
  • An investigation has been performed to develop an analysis tool based on a nonlinear beam theory, which can be used to predict the long-term behavior of an artificial hip joint. The nonlinear behav ior of the femur arise from the coupled dependence of the bone density and the mechanical properties on each other. The beam theory together with its numerical algorithm is developed to take into account the nonlinear bone remodeling process of the femur that is long enough to be assumed as a beam. A piecewise linear curve for the bone remodeling rate is used in the bone remodeling theory and the surface area density of bone is modeled as the third order polynomial function of bone density. At each section of the beam, a constant curvature is assumed and the longitudinal strains are also assumed to vary linearly across the section. The Newton-Rhapson iteration method is used to solve the nonlinear equations for each cross section of the bone and a backward method is used to march along the time. The density and the remodeling signal ar, calculated along with time for the various time steps, and the developed beam theory has been verified by comparing with the results of finite element analysis of a remodeling bone with an artificial hip joint of titanium prosthesis subjected to uni-axial loads and pure bending moment. It is concluded that the developed beam theory can be used to predict the long-term behavior of the femur and thus to design the artificial hip prosthesis.

Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Yeong Hui;Kim, Yong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • The seismic responses of a building are affected by the base soil conditions. In this study, linear time-history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of 3-, 5-, and 7-story steel buildings, considering the rigid and soft soil conditions. Foundation soil stiffness, based on the equivalent static stiffness formula, is used for the damper, one of the Link elements in SAP 2000. The base shear forces of the steel buildings, estimated through time-history analysis using the general-purpose structural-analysis program of SAP 2000, were compared with those calculated using the domestic seismic design code, the UBC-97 design response spectrum. and pushover static nonlinear analysis. The steel buildings designed for gravity and wind loads showed elastic responses with a moderate earthquake of 0.11 g, while the elastic soft-soil layer increased the displacement and the base shear force of the buildings due to soil-structure interaction and soil amplification. Therefore, considering the characteristics of the soft-soil layer, it is more reasonable to perform an elastic seismic analysis of a building's structure during weak or moderate earthquakes.

Nonlinear Dynamic Behavior of Temporary Rail Considering the Effect of Vibration (진동영향을 고려한 가시설 레일의 동적 거동 특성)

  • Lim, Hyung Joon;Ryu, Dong Hyeon;Won, Jong Hwa;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.171-178
    • /
    • 2008
  • The object of this study is to propose a rate of vibration increase in the analysis of temporary rail non-fixed in the vertical direction and characterize the nonlinear dynamic behavior of temporary rail while considering longitudinal and latitudinal load, vibration and lifting. The rate of vibration increase is proposed through measurement of an actual structure that is largely affected by loading and vibration of the superstructure. Dynamic behavior was additionally characterized by the dynamic response resulting from nonlinear dynamic finite element analysis with vehicle loading, including the rate of vibration increase. As a result, the rate of vibration increase by the vibration of an Auto Bar Machine is determined as 7% and the maximum stress in the analysis of the nonlinear rail is increased 14.5% over that of linear rail, and temporary rail is shown to be very sensitive to the velocity of the superstructure.

Dynamic Analysis on Belt-Driven Spindle System of Machine Tools

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.82-89
    • /
    • 2002
  • The need of ultra-precision machine tools, which manufacture and machine the high precision parts used in computers, semi-conductors and other precision machines, has been increased over years. Therefore it is important to design the driving parts, which affect significantly on their performances. In this paper, the dynamic analyses on the belt-driven system were explored. Relation of the acoustical natural frequency and the tension of belt was derived and presented through experiments. Also, while the dynamic loads on motor system were changed, dynamic deflections were calculated through finite element analysis. Nonlinear characteristics of the bearings having an effect on the dynamic performance were studied and the belt connecting the motor (driving part) to spindle of a machine tool (driven part) was modeled as truss and beam elements fur simulations under various conditions, and a beam element model was verified to be more useful.

Implementation of Current Control Type Inverter for using Power Conditioning of Grid-connective Power System (계통의 Power Conditioning용 전류제어형 인버터의 구현)

  • Lee S. R.;Ko S. H.;Kim S. S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.226-229
    • /
    • 2003
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks having non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner is mostly current controlled type. In this paper, the proposed current control algorithm is analysed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation, experiment results is presented.

  • PDF

Static and modal analysis of bio-inspired laminated composite shells using numerical simulation

  • Faisal Baakeel;Mohamed A. Eltaher;Muhammad Adnan Basha;Ammar Melibari;Alaa A. Abdelrhman
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.347-368
    • /
    • 2023
  • In the first part of this study, a numerical simulation model was developed using the mechanical APDL software to validate the results of the 3D-elastisity theory on the laminated sandwich plate developed by Panago. The numerical simulation model showed a good agreement to the results of Pagano's theory in terms of deflection, normal stresses, and shear stresses. In the second part of this study, the developed numerical simulation model was used to define different plates dimensions and fibers layup orientations to examine the load response in terms of deflection and stresses. Further analysis was implemented on the natural frequencies of laminated xxx plates of the plates. The layup configurations include Unidirectional (UD), Cross-Ply (CP), Quasi-Isotropic (QI), the linear bio-inspired known as Linear-Helicoidal (LH), and the nonlinear bio-inspired known as Fibonacci-Helicoidal (FH). The following numerical simulation model can be used for the design and study of novel, sophisticated bio-inspired composite structures in a variety of configurations subjected to sinusoidal or constant loads.

Power Conditioning System for Grid-connective PV Power Systems (계통 연계 태양광 발전 시스템을 위한 Power Conditioning 시스템)

  • Lee S. R.;Ko S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.38-41
    • /
    • 2002
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks haying non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner ismostley current controlled type. In this paper, the proposed current control algorithm is analyzed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF