• Title/Summary/Keyword: Linear Waves Modulation

Search Result 13, Processing Time 0.032 seconds

수치 파동 수조를 이용한 비선형파의 파형변화와 속도분포 해석 (Spatial Modulation of Nonlinear Waves and Their Kinematics using a Numerical Wave Tank)

  • 구원철;최가람
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.12-16
    • /
    • 2009
  • In this study, the wave profiles and kinematics of highly nonlinear waves at various water depths were calculated using a 2D fully nonlinear Numerical Wave Tank (NWT). The NWT was developed based on the Boundary Element Method (BEM) with the potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme by 4th-order Runge-Kutta time integration. The spatial variation of intermediate-depth waves along the direction of wave propagation was caused by the unintended generation of 2nd-order free waves, which were originally investigated both theoretically and experimentally by Goda (1998). These free waves were induced by the mismatch between the linear motion of wave maker and nonlinear displacement of water particles adjacent to the maker. When the 2nd-order wave maker motion was applied, the spatial modulation of the waves caused by the free waves was not observed. The respective magnitudes of the nonlinear wave components for various water depths were compared. It was found that the high-order wave components greatly increase as the water depth decreases. The wave kinematics at various locations were calculated and compared with the linear and the Stokes 2nd-order theories.

A Simplified Carrier-Based Pulse-Width Modulation Strategy for Two-level Voltage Source Inverters in the Over-modulation Region

  • Jing, Feng;He, Feng-You
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1480-1489
    • /
    • 2017
  • In this study, a carrier-based pulse-width modulation (PWM) method for two-level voltage source inverters in the over-modulation region is proposed. Based on the superposition principle, the reference voltage vectors outside the linear modulation boundary are adjusted to relocate to the vector hexagon, while their fundamental magnitudes are retained. In accordance with the adjusted reference vector, the corresponding modulated waves are respectively deduced in over-modulation mode I and II to generate the gate signals of the power switches, guaranteeing the linearity of the fundamental output phase voltage in the over-modulation region. Moreover, due to the linear relationship between the voltage vector and the duty ratios, the complicated sector identification and holding angle calculation found in previous methods are avoided in the modulated wave synthesis, which provides great simplicity for the proposed carrier-based over-modulation strategy. Experimental results demonstrate the effectiveness and validity of the proposed method.

Bragg 반사에 의한 비선형파의 공간적 파형변조해석 (Spatial Modulation of Nonlinear Waves due to Bragg Reflection)

  • 최가람;구원철
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.34-40
    • /
    • 2010
  • Bragg reflection of nonlinear waves is simulated by a 2D fully nonlinear numerical wave tank (NWT). The developed NWT was based on the Boundary Element Method (BEM) with potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme with Runge-Kutta 4th-order time integration. A spatial variation of wave elevations and their Fourier amplitudes of each component are compared to investigate the effect of sea bottom ripples and their relative heights. The incident waves over an undulated sea bottom are partially reflected and changed to partial standing waves due to Bragg reflection. The present results are verified with linear calculations and experimental data. It is found that the 1st-order wave component is mainly affected by Bragg reflection and its spatial modulation is significant in front of the bottom ripples.

Spin Wave Interference in Magnetic Nanostructures

  • Yang, Hyun-Soo;Kwon, Jae-Hyun;Mukherjee, Sankha Subhra;Jamali, Mahdi;Hayashi, Masamitsu
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.7-8
    • /
    • 2011
  • Although yttrium iron garnet (YIG) has provided a great vehicle for the study of spin waves in the past, associated difficulties in film deposition and device fabrication using YIG had limited the applicability of spin waves to practical devices. However, microfabrication techniques have made it possible to characterize both the resonant as well as the travelling characteristics of spin waves in permalloy (Py). A variety of methods have been used for measuring spin waves, including Brillouin light scattering (BLS), magneto-optic Kerr effect (MOKE), vector network analyzer ferromagnetic resonance (VNA-FMR), and pulse inductive microwave magnetometry (PIMM). PIMM is one of the most preferred methodologies of measuring travelling spin waves. In this method, an electrical impulse is applied at one of two coplanar waveguides patterned on top of oxide-insulated Py, producing a local disturbance in the magnetization of the Py. The resulting disturbance travels down the Py in the form of waves, and is inductively picked up by the other coplanar waveguide. We investigate the effect of the pulse width of excitation pulses on the generated spin wave packets using both experimental results and micromagnetic simulations. We show that spin wave packets generated from electrical pulses are a superposition of two separate spin wave packets, one generated from the rising edge and the other from the falling edge, which interfere either constructively or destructively with one another, depending upon the magnitude and direction of the field bias conditions. A method of spin wave amplitude modulation is also presented by the linear superposition of spin waves. We use interfering spin waves resulting from two closely spaced voltage impulses for the modulation of the magnitude of the resultant spin wave packets.

  • PDF

Unsteady Interaction of the Surface Gravity Waves with the Nonuniform Current

  • Lee, Kwi-Joo;Kim, Kyoung-Hwa;Ra, Young-Kon;Shermeneva, M.A.;Shugan, I.V.
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.34-39
    • /
    • 2002
  • 본 논문에서는 수면파(Surface wave)와 수중파 (Internal wave)간의 동적 상관관계에 관하여 수행된 연구결과를 정리하였다. 표면파의 비선형 문제는 파의 경사매개변수를 2차원으로 가정하여 해석하였으며, Cauchy 문제는 불균일 조류상의 균일 수면중력파에 대하여 해석하였다. 또한, 파의 경사, 주기의 범위(Frequency range) 그리고 자유표면하의 조류의 분포들간의 조화에 대한 연구가 수행되었으며 해류 및 이동파와 연계되어 수중파의 최전 후방에 형성될 수 있는 정적 파형 (Steady wave pattern)이 수면파형에 포함되었다.

Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)

  • Liu, Peipei;Sohn, Hoon;Kundu, Tribikram
    • 비파괴검사학회지
    • /
    • 제34권6호
    • /
    • pp.419-427
    • /
    • 2014
  • Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference (MSPCD), which is extracted from the spectral plot, measures the degree of crack-induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

제주 서남부해역에서 내부파에 의한 소나 탐지확률 변화 (Variation of probability of sonar detection by internal waves in the South Western Sea of Jeju Island)

  • 안상겸;박중용;추영민;성우제
    • 한국음향학회지
    • /
    • 제37권1호
    • /
    • pp.31-38
    • /
    • 2018
  • 2015년 5월 제주 서남부 해역에서 실시된 SAVEX15(Shallow Water Acoustic Variability EXperiment 2015) 데이터를 기반으로 내부파가 소나의 예상탐지확률(Predictive Probability of Detection, PPD)에 미치는 영향에 대하여 분석하였다. 제주 서남부 해역은 내부파, 수중음파채널 등으로 인하여 복잡한 해수 유동이 존재하는 해역이다. 본 논문에서는 확률적인 접근 방법을 통하여 소나의 성능을 예측하였다. SAVEX15 데이터 중 11 kHz ~ 31 kHz 대역대의 LFM(Linear Frequency Modulation), MLS(Maximum Length Sequence) 신호를 데이터 처리 하여 음원과 수신기가 약 2.8 km 떨어진 지점에서의 전달손실(Transmission Loss, TL)과 소음준위(Noise Level, NL) 값을 산출하였다. TL과 NL의 확률밀도함수(Probability Density Function, PDF)를 합성곱하여 신호이득에 대한 확률밀도 함수를 구하고 음원과 수신기의 수심에 따른 예상탐지확률을 산출하였다. 솔리톤 패킷과 내부조석 등의 내부파가 존재할 때 시간에 따른 예상탐지확률의 변화를 분석한 결과 각각 다른 양상으로 예상탐지확률 값에 영향을 주는 것을 확인하였다.

Retrieval of Spherical Ocean Wave Parameters Using RADARSAT-2 SAR Sensor Observed at Chukk, Micronesia

  • Chaturvedi, Sudhir Kumar;Yang, Chan-Su;Song, Jung-Hwan;Ouchi, Kazuo;Shanmugam, P.
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.213-223
    • /
    • 2011
  • The purpose of this study is to estimate the spherical wave parameters that appears in synthetic aperture radar (SAR) image acquired over the coast of Chukk, Micronesia. The retrieval of ocean wave parameters consists of two main stages: the first is to determine the dominant wavelengths by Fast Fourier Transform (FFT) over 16 sub-image areas and the second is to estimate wave slopes and heights using dispersion relationship under various water wave conditions. It is assumed that the spherical waves are linear and progressive. These type of waves have the range and azimuth components traveling in radial directions. The azimuth travelling waves are more affected by the velocity bunching mechanism and it is difficult to estimate the wave parameters for these affected areas in SAR imagery. In order to compensate these effects, the velocity bunching ratio (VBR) based on modulation transfer function (MTF) was compared with the intensity ratio for neighbor area in the radial direction in order to assign the spherical wave properties for azimuthally travelling waves. Dispersion relation provides the good estimates for the wave heights for all the selected sub-image areas in the range of 1m to 2m. VBR based on MTF was found to be 0.78 at wave height of 1.36m, while the intensity-based VBR was 0.69 which corresponds to the height of 1.75m. It can be said that the velocity bunching accounts for azimuthally travelling spherical waves and the difference results from the sea-bottom effects.

변조된 입사파의 쐐기에 의한 산란 (Nonlinear Diffraction of Incident Waves with Side-band Disturbances by a Thin Wedge)

  • 지원식;최항순
    • 한국해안해양공학회지
    • /
    • 제3권1호
    • /
    • pp.45-53
    • /
    • 1991
  • 본 논문에서는 변조된 입사파의 쐐기에 의한 비선형 산란을 해석하였다. 쐐기의 목이 작다고 가정하여 포물형 근사를 도입하여 문제를 단순화시켰다. 이 문제에는 척도가 서로 다른 시간 및 공간 변수가 포함되어 있으므로 다척도 전개기법을 이용하였다. 비선형 산란파의 전개식은 일종의 3차 Schrodinger 방정식으로 기술할 수 있음을 밝혔는 데, 이 식에는 군속도로 진행하는 선형시간전개항, 선형측면분산항 그리고 3차 비선형항이 포함되어 있다. 유한차분법을 사용하여 수행 한 수치 계산의 결과에 의하면 산란파는 비선형항이 클 수록 그리고 변조비가 작을 수록 불안정해지며, 초기에 형성되는 스템파는 곧 여러 개의 파성분으로 분리되어 시간에 따라 변동한다. 전반적으로 보아 산란파의 전개에는 비선형항이 지배적인 인자라는 결론을 내릴 수 있다.

  • PDF

Magneto-optical Measurements of Semiconductor Quantum Structures in Pulsed-magnetic Fields

  • Kim, Yongmin
    • Applied Science and Convergence Technology
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2014
  • Semiconductor quantum structures are often characterized by their energy gaps which are modified by the quantum size effect. Energy levels in semiconductors can be realized by optical transitions within confined structures. Photoluminescence spectroscopy in magnetic fields at low temperatures has proved to be a powerful technique for investigating the electronic states of quantum semiconductor heterostructures and offers a complimentary tool to electrical transport studies. In this review, we examine comprehensive investigations of magneto-excitonic and Landau transitions in a large variety of undoped and doped quantum-well structures. Strong magnetic fields change the diamagnetic energy shift of free excitons from quadratic to linear in B in undoped single quantum well samples. Two-dimensional electron gas induced by modulation doping shows pronounce quantum oscillations in integer quantum Hall regime and discontinuous transition at ${\nu}=1$. Such discontinuous transition can be explained as the formation of spin waves or Skyrmions.