• 제목/요약/키워드: Linear Vibrations

검색결과 228건 처리시간 0.044초

조류력을 받는 해양케이블의 자유진동해석 (Free Vibrations of Ocean Cables under Currents)

  • 김문영;김남일;윤종윤
    • 한국해안해양공학회지
    • /
    • 제11권4호
    • /
    • pp.231-237
    • /
    • 1999
  • 다절점 케이블요소를 이용하여 조류하중을 받는 해양 케이블의 자유진동해석을 수행한다. 등매개 곡선 케이블요소(isoparametric cable element)의 접선강성행렬과 질량행렬을 유도하고, 하중증분법을 이용하여 지점 변위를 일으키고 자중, 부력, 그리고 조류력을 받는 케이블의 초기평형 상태를 결정한다. 초기의 정적평형상태를 기준으로 부가질량을 고려한 해양케이블의 자유진동해석을 수행한다. 수중케이블의 자유진동해석을 통하여 얻은 해석결과와 기존의 문헌의 결과를 비교, 검토함으로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다.

  • PDF

Analytical study of nonlinear vibration of oscillators with damping

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, Homotopy Perturbation Method (HPM) is used to solve the nonlinear oscillators with damping. We have considered two strong nonlinear equations to show the application of the method. The Runge-Kutta's algorithm is used to obtain the numerical solution for the problems. The method works very well for the whole range of initial amplitudes and does not demand small perturbation and also sufficiently accurate to both linear and nonlinear physics and engineering problems. Finally to show the accuracy of the HPM, the results have been shown graphically and compared with the numerical solution.

Stochastic optimum design criterion of added viscous dampers for buildings seismic protection

  • Marano, Giuseppe Carlo;Trentadue, Francesco;Greco, Rita
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.21-37
    • /
    • 2007
  • In this study a stochastic approach for linear viscous dampers design adopted for seismic protection of buildings is developed. Devices optimal placement into the main structure and their mechanical parameters are attained by means of a reliability-based optimum design criterion, in which an objective function (O.F.) is minimized, subject to a stochastic constraint. The seismic input is modelled by a non stationary modulated Kanai Tajimi filtered stochastic process. Building is represented by means of a plane shear type frame model. The selected criterion for the optimization searches the minimum of the O.F., here assumed to be the cost of the seismic protection, i.e., assumed proportional to the sum of added dampings of each device. The stochastic constraint limits a suitable approximated measure of the structure failure probability, here associated to the maximum interstorey drift crossing over a given threshold limit, related, according with modern Technical Codes, to the required damage control.

Accurate analytical solution for nonlinear free vibration of beams

  • Bayat, M.;Pakar, I.
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.337-347
    • /
    • 2012
  • In this study, Hamiltonian Approach (HA) is applied to analysis the nonlinear free vibration of beams. Two well-known examples are illustrated to show the efficiency of this method. One of them deals with the Nonlinear vibration of an electrostatically actuated microbeam and the other is the nonlinear vibrations of tapered beams. This new approach prepares us to achieve the beam's natural frequencies and mode shapes easily and a rapidly convergent sequence is obtained during the solution. The effects of the small parameters on the frequency of the beams are discussed. Some comparisons are conducted between the results obtained by the Hamiltonian Approach (HA) and numerical solutions using to illustrate the effectiveness and convenience of the proposed methods.

진화전략과 신경회로망을 이용한 능동 현가장치 LQG 제어기 설계 (LQG Controller Design for Active Suspensions using Evolution Strategy and Neural Network)

  • 천종민;김종문;박민국;권순만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.266-268
    • /
    • 2006
  • In this paper, we design a Linear Quadratic Gaussian(LQG) controller for active suspensions. We can improve the inherent suspension problem, trade-off between the ride quality and the suspension travel by selecting appropriate weights in the LQ-objective function. Using an optimization-algorithm, Evolution Strategy(ES), we find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle's state variables. The frequencies and proper control gains are used for the neural network data. During a vehicle running, the trained on-line neural network is activated and provides the proper gains for non-trained frequencies.

  • PDF

Boundary Control of a Tensioned Elastic Axially Moving String

  • Kim, Chang-Won;Hong, Keum-Shik;Park, Hahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2260-2265
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string are described by a non-linear partial differential equation coupled with an ordinary differential equation. A time varying control in the form of right boundary transverse motions is proposed in stabilizing the transverse vibrations of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the closed-loop system is verified. The effectiveness of the proposed controller is shown through simulations.

  • PDF

A CONTROLLER DESIGN OF ACTIVE SUSPENSION USING EVOLUTION STRATEGY AND NEURAL NETWORK

  • Cheon, Jong-Min;Kim, Seog-Joo;Lee, Jong-Moo;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1530-1533
    • /
    • 2005
  • In this paper, we design a Linear Quadratic Gaussian controller for the active suspension. We can improve the inherent suspension problem, trade-off between the ride quality and the suspension travel by selecting appropriate weights in the LQ-objective function. Because any definite rules for selecting weights do not exist, we use an optimization-algorithm, Evolution Strategy (ES) to find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle's state variables. The frequencies and proper control gains are used for the neural network data. During a vehicle running, the trained on-line neural network is activated and provides the proper gains for non-trained frequencies. For the full-state feedback control, Kalman filter observes the full states and Fourier transform is used to detect the frequency of the road.

  • PDF

초정밀 시스템의 능동 진동제어용 전자기 액츄에이터 (Electromagnetic Actuator for Active Vibration Control of Precise System)

  • 이주훈;전정우;황돈하;강동식;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.228-230
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters. and electromagnetic actuators.

  • PDF

Active feedback control for cable vibrations

  • Ubertini, Filippo
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.407-428
    • /
    • 2008
  • The nonlinear mechanics of cable vibration is caught either by analytical or numerical models. Nevertheless, the choice of the most appropriate method, in consideration of the problem under study, is not straightforward. A feedback control policy might even enhance the complexity of the system. Thus, in order to design a suitable controller, different approaches are here adopted. Devices mounted transversely to the cable in the two directions, close to one of its ends, supply the feedback control action based on the observation of the response in a few points. The low order terms of the control law are, at first, analyzed in the framework of linear models. Explicit analytic solutions are derived for this purpose. The effectiveness of high order terms in the control law is then explored by means of a finite element model(FEM), which accounts for high order harmonics. A suitably dimensional analytical Galerkin model is finally derived, to investigate the effectiveness of the proposed control strategy, when applied to a physical model.

Reduced Density Matrix Theory for Vibrational Absorption Line Shape in Energy Transfer Systems: Non-Condon Effects in Water

  • Yang, Mi-No
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.439-443
    • /
    • 2011
  • Using the projection operator technique, a reduced density matrix theory for linear absorption spectrum of energy transfer systems is developed for the theoretical absorption line shape of the systems with non-Condon transitions. As an application, we considered a model system of OH vibrations of water. In the present model calculation, the OH vibration modes are coupled to each other via intra-molecular coupling mechanism while their intermolecular couplings are turned off. The time-correlation functions appearing in the formulation are calculated from a mixed quantum/classical mechanics method. The present theory is successful in reproducing the exact absorption line shape. Also the present theory was improved from an existing approximate theory, time-averaged approximation approach.