• Title/Summary/Keyword: Linear Quadratic Regulator(LQR)

Search Result 98, Processing Time 0.029 seconds

Controller Design of a DC-DC Converter using an Optimal Control Theory (최적제어이론을 이용한 DC-DC 컨버터의 제어기 설계)

  • Lee, S.H.;Bae, E.K.;Sin, C.J.;Jeon, K.Y.;Jeon, J.Y.;Oh, B.H.;Lee, H.G.;Han, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.421-423
    • /
    • 2007
  • In this paper, The authors apply a state feedback control using an optimal control theory to improve the stability of the control and the dynamic response of the DC-DC converter system with a number of different loads. To execute a this state feedback control, The authors present the pole placement technique using Linear Quadratic Regulator(LQR) to optimally control the system. An integrator can also be included in the open-loop path in order to minimize the steady-state error of the output voltage. To confirm the superiority of the controller, The simulation results are presented.

  • PDF

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

A LQR Controller Design for Performance Optimization of Medium Scale Commercial Aircraft Turbofan Engine (II) (중형항공기용 터보팬 엔진의 성능최적화를 위한 LQR 제어기 설계 (II))

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • The performance of the turbofan engine, a medium scale civil aircraft which has been developing in Rep. of Korea, was analyzed and the control scheme for optimization the performance was studied. The dynamic and real-time linear simulation was performed in the previous study The result was that the fuel scedule of the step increase overshoot the limit temperature(3105 $^{\cire}R$) of the high pressure turbine and got small surge margine of the high pressure compressor. Therefore a control scheme such as the LQR(Linear Quadratic Regulator) was applied to optimizing the performance in this studies. The linear model was expected for designing controller and the real time linear model was developed to be closed to nonlinear simulation results. The system matrices were derived from sampling operating points in the scheduled range and then the least square method was applied to the interpolation between these sampling points, where each element of matrices was a function of the rotor speed. The control variables were the fuel flow and the low pressure compressor bleed air. The controlled linear model eliminated the inlet temperature overshoot of the high pressure turbine and obtained maximum surge margins within 0.55. The SFC was stabilized in the range of 0.355 to 0.43.

  • PDF

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

Balancing Control Algorithm for a Single-Wheeled Mobile Robot (외륜 이동로봇의 균형제어 알고리즘)

  • Lee, Hyun Tak;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • Kim, Doo-Kie;Kim, Dong-Hyawn;Chang, Sang-Kil;Chang, Seong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.

Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping (능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구)

  • 고성현;박현철;황운봉;박철휴
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • Duy, Vo Hoang;Hung, Nguyen;Jeong, Sang-Kwun;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.444-449
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) and presented in time domain.

  • PDF

Vibration Control of Arc Type Shell using Active Constrained Layer Damping (능동 감쇠층을 이용한 아크형태 쉘 모델에 대한 진동특성 연구)

  • 고성현;박현철;박철휴;황운봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1032-1038
    • /
    • 2002
  • The Active Constrained Layer Damping(ACLO) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The Arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and visco damping, The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for piezo actuator is obtain by LQR(Linear Quadratic Regulator) Method. The performance of ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment, Also, the actuation capability of a piezo actuator is examined experimentally by using various thickness of Viscoelastic Materials(VEM).

  • PDF