• Title/Summary/Keyword: Linear Prediction Algorithm

Search Result 289, Processing Time 0.024 seconds

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Multichannel Blind Equalization using Multistep Prediction and Adaptive Implementation

  • Ahn, Kyung-Seung;Hwang, Ho-Sun;Hwang, Tae-Jin;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.69-72
    • /
    • 2001
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequence, nor does it require a priori channel information. Recently, Tong et al. proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the second order statistics techniques, fur example, subspace method, prediction error method, and so on. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind equalizer length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary delay. In this paper, we induce the optimal delay, and propose the adaptive blind equalizer with multi-step linear prediction using RLS-type algorithm. Simulation results are presented to demonstrate the proposed algorithm and to compare it with existing algorithms.

  • PDF

A Study on the Azimuth Direction Extrapolation for SAR Image Using ω-κ Algorithm (ω-κ 알고리즘을 이용한 SAR 영상의 방위각 방향 외삽 기법 연구)

  • Park, Se-Hoon;Choi, In-Sik;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.1014-1017
    • /
    • 2012
  • In this paper, we introduce a method which enhances the azimuth resolution to obtain the high-resolution SAR image. We used ${\omega}-k$ algorithm to obtain the SAR image and extrapolation using auto-regressive(AR) method to enhance the azimuth resolution in the 2-D frequency domain. The AR method is a linear prediction model-based extrapolation technique. In the result, we showed the performance comparison with respect to the target range and the prediction order of Burg algorithm which is one of AR method.

GOP ARIMA based Bandwidth Prediction for Non-stationary VBR Traffic (MPEG VBR 트래픽을 위한 GOP ARIMA 기반 대역폭 예측기법)

  • Kang, Sung-Joo;Won, You-Jip
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.301-303
    • /
    • 2004
  • In this work, we develop on-line traffic prediction algorithm for real-time VBR traffic. There are a number of important issues: (i) The traffic prediction algorithm should exploit the stochastic characteristics of the underlying traffic and (ii) it should quickly adapt to structural changes in underlying traffic. GOP ARIMA model effectively addresses this issues and it is used as basis in our bandwidth prediction. Our prediction model deploy Kalman filter to incorporate the prediction error for the next prediction round. We examine the performance of GOP ARIMA based prediction with linear prediction with LMS and double exponential smoothing. The proposed prediction algorithm exhibits superior performam againt the rest.

  • PDF

HYBRID CODING USING THE LMS ALGORITHM (LMS ALGORITHM을 이용한 HYBRID CODING)

  • Kim, Seung-Won;Lee, Keun-Young
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1379-1382
    • /
    • 1987
  • IN ADAPTIVE LINEAR PREDICTION, AN ADAPTIVE CAPABILITY IS BUILT INTO THE PROCESSOR SUCH THAT AS THE IMAGE STATISTICS CHANGE, THE PREDICTION FILTER COEFFICIENTS THEMSELVES CHANGE, PRODUCING A NEW FILTER MORE CLOSELY OPTIMIZED TO THE NEW SET OF IMAGES STATISTICS. THE LMS ALGORITHM MAY BE USED TO ADAPT THE COEFFICIENT OF AN ADAPTIVE PREDICTION FILTER FOR IMAGE SOURCE ENCODING. IN THIS PAPER, TWO CODING SYSTEMS USING DPCM AND LMS ALGORITHMS RESPECTIVELY FOR OBTAINING THE FIRST TRANSFORMED COEFFICIENT IN HYBRID CODING ARE COMPARED.

  • PDF

An Additive Sparse Penalty for Variable Selection in High-Dimensional Linear Regression Model

  • Lee, Sangin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.147-157
    • /
    • 2015
  • We consider a sparse high-dimensional linear regression model. Penalized methods using LASSO or non-convex penalties have been widely used for variable selection and estimation in high-dimensional regression models. In penalized regression, the selection and prediction performances depend on which penalty function is used. For example, it is known that LASSO has a good prediction performance but tends to select more variables than necessary. In this paper, we propose an additive sparse penalty for variable selection using a combination of LASSO and minimax concave penalties (MCP). The proposed penalty is designed for good properties of both LASSO and MCP.We develop an efficient algorithm to compute the proposed estimator by combining a concave convex procedure and coordinate descent algorithm. Numerical studies show that the proposed method has better selection and prediction performances compared to other penalized methods.

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

An Efficient Vocoder for Digital Cellular System (디지틀 셀룰라 시스템을 위한 효율적인 음성부호화 기술)

  • 강상원;이인성;한경호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1348-1357
    • /
    • 1993
  • In this paper, we present code-excited linear prediction coding using trellis coded vector excitation, termed trellis code-excited linear prediction coding (TCELP), for an efficient 8 kbps digital cellular vocoder. A training sequence-based algorithm is developed for designing an optimized codebook subject to the TCELP structure. Also, we discuss the encoding complexity of the TCELP system and trellis symbol release rules that avoid excessive encoding delay. finally, simulation results results for the TCELP coder are given at the bit rate of 8 kbps.

  • PDF

A Study on Modified Linear Prediction Method to Improve Target Estimation (목표물 추정 향상을 위한 수정 선형 예측방법에 대한 연구)

  • Lee, Kwan-Hyeong;Joo, Jong-Hyuk
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.337-342
    • /
    • 2016
  • In this paper, we studied a modified linear prediction method to estimate target signal correctly. Linear prediction method estimate direction-of-arrival to linear combination for any antenna element and other antenna elements. Modified linear prediction used optimal weight and posterior probability method. Through simulation, we are comparative analysis about the performance of proposed, bartlett and MUSIC method. From simulation, Bartlett and MUSIC method was estimation 3 targets signal, and proposed method estimated 4 targets. We showed the superior performance of the proposed algorithm relative to the classical method in order to estimate of target signals.