• Title/Summary/Keyword: Linear Potential Theory

Search Result 191, Processing Time 0.027 seconds

Use of 3D Printing Technology to Create Personal Fashion: UTAUT and Need for Uniqueness

  • Popov, Darinka;Koo, Sumin
    • Journal of Fashion Business
    • /
    • v.24 no.6
    • /
    • pp.1-17
    • /
    • 2020
  • This study investigated the perceptions, attitudes, and behaviors of potential consumers toward using 3D printers to create their personal clothes. An online survey and a series of Welch's t-tests and ANOVA were conducted to investigate the differences in demographic characteristics, prior experiences in 3D printing, and levels of need for uniqueness among the sub-groups. A multiple linear regression analysis was performed to test the relationships among variables of the modified Unified Theory of Acceptance and Use of Technology (UTAUT). There were significant differences in gender and prior experiences regarding the UTAUT of personal 3D printing. The need for uniqueness has a positive effect on consumers' intention to use 3D printing technology for designing personal clothes and perception of the price of the 3D printer used to create individual clothes is important. Positive relationships were found between UTAUT variables as well as the use and purchase intentions. This study analyzed the potential for popularization of 3D printing technology to create fashion items and explore consumer willingness to embrace and use personal fashion designs. The results of this study are expected to assist consumers, designers, retailers and marketers, and experts in 3D printing technology by providing insight into consumer awareness and acceptance of personalized 3D-printed fashion and products.

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.

FMECA Expert System Using Fuzzy linear Opinion Pool (Fuzzy Linear Opinion Pool를 이용한 Five-Phase 전문가 시스템)

  • Byeon, Yoong-Tae;Kim, Dong-Jin;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.148-153
    • /
    • 2009
  • Failure Mode Effects and Criticality Analysis (FMECA) is one of most widely used methods in modem engineering system to investigate potential failure modes and its severity upon the system. FMECA evaluates criticality and severity of each failure mode and visualize the risk level matrix putting those indices to column and row variable respectably. Generally, those indices are determined subjectively by experts and operators. However, this process has no choice but to include uncertainty. In this paper, a method for eliciting expert opinions considering its uncertainty is proposed to evaluate the criticality and severity. In addition, a fuzzy expert system is constructed in order to determine the crisp value of risk level for each failure mode. Finally, an illustrative example system is analyzed in the case study. The results are worth considering while deciding the proper policies for each component of the system.

Numerical Analysis of Reflection Characteristics of Perforated Breakwater with a Resonant Channel (공진수로 내장형 유공방파제의 반사특성에 관한 수치해석 연구)

  • Kim, Jeong-Seok;Seo, Ji-Hye;Lee, Joong-Woo;Park, Woo-Sun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • In this study, a new concept perforated breakwater is proposed, which is having resonant channels. In the channel, perforated plate is installed for dissipating wave energy induced by flow separations. The breakwater has two advantages compared with conventional perforated breakwater having wave chamber with slotted walls. One is easy to control the target wave condition for dissipating wave energy, and the other is having the high structural safety because the structural members are not exposed to impact waves, directly. To evaluate wave reflection characteristics of the proposed breakwater, numerical experiment was carried out by using Galerkin's finite element model based on the linear potential theory. The results indicated that considerable energy dissipation occurs near the resonant period of channel, and wave reflection characteristics are affected by channel shape, location and opening ratio.

Prediction of Motion Responses between Two Offshore Floating Structures in Waves

  • Kim, Mun-Sung;Ha, Mun-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.13-25
    • /
    • 2002
  • In this paper, the motion responses with hydrodynamic interaction effect between two off-shore floating structures in various heading waves are studied by using a linearized three-dimensional potential theory. Numerical calculations using three-dimensional pulsating source distribution techniques have been carried out for twelve coupled linear motion responses and relative motions of the barge and the ship in oblique waves. The computational results give a good correlation with the experimental results and also with other numerical results. As a result, the present computational tool can be used effectively to predict the motion responses of multiple offshore floating structures in waves.

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

Control of Dynamic Reaponses of Huge Structures for Ocean Space Utilization in Waves (해양공간이용구조물의 응답제어)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.16-30
    • /
    • 1991
  • A numerical procedure is described for predicting the dynamic responses of combined systems of floating breakwaters and huge offshore structures supported by a large numer of the floating bodies in waves. The hydrodynamic interactins among tatal floating bodies are taken into account in their exact form within the context of linear potential theory. Wave control effects are discussed with both hydrodynamic interactions and hydrodynamic-structure interaction effects. The method presented is applicalbe to combined systems of floating breakwaters and huge structures for ocean space utilization for which a number of practical uses are seen in the future.

  • PDF

Control of Dynamic Reaponses of Huge Structures for Ocean Space Utilization in Waves (해양공간이용구조물의 응답제어)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.156-156
    • /
    • 1991
  • A numerical procedure is described for predicting the dynamic responses of combined systems of floating breakwaters and huge offshore structures supported by a large numer of the floating bodies in waves. The hydrodynamic interactins among tatal floating bodies are taken into account in their exact form within the context of linear potential theory. Wave control effects are discussed with both hydrodynamic interactions and hydrodynamic-structure interaction effects. The method presented is applicalbe to combined systems of floating breakwaters and huge structures for ocean space utilization for which a number of practical uses are seen in the future.