• Title/Summary/Keyword: Linear Motion System

Search Result 869, Processing Time 0.029 seconds

Structural Response Analysis of a Tension Leg Platform in Multi-directional Irregular Waves (다방향 불규칙파중의 인장계류식 해양구조물의 구조응답 해석)

  • Lee, Soo-Lyong;Suh, Kyu-Youl;Lee, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.675-681
    • /
    • 2007
  • A numerical procedure is described for estimating the effects of the multi-directional irregular waves on the structural responses of the Tension Leg Platform (TLP). The numerical approach is based on a three dimensional source distribution method for hydrodynamic forces, a three dimensional frame analysis method for structural responses, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The spectral description used in spectral analysis of directional waves for the linear system of a TLP in the frequency domain is sufficient to completely define the structural responses. This is due to both the wave inputs and responses are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. The numerical results for the linear motion responses and tension variations in regular waves are compared with the experimental and numerical ones, which are obtained in Yoshida et al.(1983). The results of comparison confirmed the validity of the proposed approach.

The Effect of MLC Leaf Motion Constraints on Plan Quality and Delivery Accuracy in VMAT (체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Lee, Jeong-woo;Shin, Young-Joo;Kang, Dong-Jin;Jung, Jae-Yong
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to evaluate the dose distribution by gantry rotation and MLC moving speed on treatment planning system(TPS) and linear accelerator. The dose analyzer phantom(Delta 4) was scanned by CT simulator for treatment planning. The planning target volumes(PTVs) of prostate and pancreas was prescribed 6,500 cGy, 5,000 cGy on VMAT(Volumetric Modulated Arc Therapy) by TPS while MLC speed changed. The analyzer phantom was irradiated linear accelerator using by planned parameters. Dose distribution of PTVs were evaluated by the homogeneity index, conformity index, dose volume histogram of organ at risk(rectum, bladder, spinal cord, kidney). And irradiated dose analysis were evaluated dose distribution and conformity by gamma index. The PTV dose of pancreas was 4,993 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(5,000 cGy). The dose of spinal cord, left kidney, and right kidney were accessed the lowest during 0.1 cm/deg, 1.5 cm/deg, 0.3 cm/deg. The PTV dose of prostate was 6,466 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(6,500 cGy). The dose of bladder and rectum were accessed the lowest during 0.3 cm/deg, 2.0 cm/deg. For gamma index, pancreas and prostate were analyzed the lowest error 100% at 0.8, 1.0 cm/deg and 99.6% at 0.3, 0.5 cm/deg. We should used the optimal leaf speed according to the gantry rotation if the treatment cases are performed VMAT.

Dynamical Analysis of the Mooring Vessel System Under Surge Excitations (선박 계류시스템의 종방향 외력하의 비선형 동적거동 해석)

  • Lee, Sang-Do;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.140-145
    • /
    • 2018
  • This paper deals with the dynamical analysis of a two-point mooring vessel under surge excitations. The characteristics of nonlinear behaviors are investigated completely including bifurcation and limit cycle according to particular input parameter changes. The strong nonlinearity of the mooring system is mainly caused by linear and cubic terms of restoring force. The numerical simulation is performed based on the fourth order Runge-Kutta algorithm. The bifurcation diagram and several instability phenomena are observed clearly by varying amplitudes as well as frequencies of surge excitations. Stable periodic solutions, called the periodic windows, can be obtained in succession between chaotic clouds of dots in case of frequency ${\omega}=0.4rad/s$. In addition, the chaotic region is unexpectedly increased when external forcing amplitude exceeds 1.0 with the angular frequency of ${\omega}=0.7rad/s$. Compared to the cases for ${\omega}=0.4$, 0.7rad/s, the region of chaotic behavior becomes more fragile than in the case of ${\omega}=1.0rad/s$. Finally, various types of steady states including sub-harmonic motion, limit cycle, and symmetry breaking phenomenon are observed in the two-point mooring system at each parameter value.

Active Stabilization for Surge Motion of Moored Vessel in Irregular Head Waves (불규칙 선수파랑 중 계류된 선박의 전후동요 제어)

  • Lee, Sang-Do;Truong, Ngoc Cuong;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.437-444
    • /
    • 2020
  • This study was focused on the stabilization of surge motions of a moored vessel under irregular head seas. A two-point moored vessel shows strong non-linearity even in regular sea, owing to its inherent non-linear restoring force. A long-crested irregular wave is subjected to the vessel system, resulting in more complex nonlinear behavior of the displacement and velocities than in the case of regular waves. Sliding mode control (SMC) is implemented in the moored vessel to control both surge displacement and surge velocity. The SMC can provide a closed-loop system with performance and robustness against parameter uncertainties and disturbances; however, chattering is the main drawback for implementing SMC. The goal of minimizing the chattering and state convergence with accuracy is achieved using a quasi-sliding mode that approximates the discontinuous function via a continuous sigmoid function. Numerical simulations were conducted to validate the effectiveness of the proposed control algorithm.

Suggestion of Additional Criteria for Site Categorization in Korea by Quantifying Regional Specific Characteristics on Seismic Response (지역고유 지진응답 특성 정량화를 통한 국내 부지 분류 기준의 추가 반영 제안)

  • Sun, Chang-Guk
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.203-218
    • /
    • 2010
  • The site categorization and corresponding site amplification factors in the current Korean seismic design guideline are based on provisions for the western United States (US), although the site effects resulting in the amplification of earthquake ground motions are directly dependent on the regional and local site characteristic conditions. In these seismic codes, two amplification factors called site coefficients, $F_a$ and $F_v$, for the short-period band and midperiod band, respectively, are listed according to a criterion, mean shear wave velocity ($V_S$) to a depth of 30 m, into five classes composed of A to E. To suggest a site classification system reflecting Korean site conditions, in this study, systematic site characterization was carried out at four regional areas, Gyeongju, Hongsung, Haemi and Sacheon, to obtain the $V_S$ profiles from surface to bedrock in field and the non-linear soil properties in laboratory. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined, and thus the site period in Korea was distributed in the low and narrow band comparing with those in western US. Based on the geotechnical characteristic properties obtained in the field and laboratory, various site-specific seismic response analyses were conducted for total 75 sites by adopting both equivalent-linear and non-linear methods. The analysis results showed that the site coefficients specified in the current Korean provision underestimate the ground motion in the short-period range and overestimate in the mid-period range. These differences can be explained by the differences in the local site characteristics including the depth to bedrock between Korea and western US. Based on the analysis results in this study and the prior research results for the Korean peninsula, new site classification system was developed by introducing the site period as representative criterion and the mean $V_S$ to a depth of shallower than 30 m as additional criterion, to reliably determine the ground motions and the corresponding design spectra taking into account the regional site characteristics in Korea.

Study on the Motility of Frozen Semen and Characteristics for Frozen Semen Processing of Jindo-Dog (진도개 동결정액 제조를 위한 정액성상과 동결정액의 운동성에 관한 연구)

  • 김흥률;이계웅;공일근
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.253-261
    • /
    • 2002
  • This study was carried out to investigate the semen characteristic, motility and viability and sperm motion characteristic by CASA test for establishing the Jindo-dog's semen freezing system. The results obtained are as follow: 1. The semen was collected 63 times. Average volume of semen, concentration of sperm, total number of sperm, progressive motility and viability were 3.8 $m\ell$ 145.6$\times$10$^{6}$ cells/$m\ell$, 396.2 x10$^{8}$ cells, 79.7% and 89.5%, respectively. Also, Fawn (Yellow) Jindo-dog comparing with White Jindo-dog showed better concentration of sperm, total number of sperm, progressive motility and viability. Among all dogs, the results of No. 2 Fawn Jindo-dog were the best. 2. The average progressive motility and viability of semen from 46 times were 73.5%, 82.3% before freezing and 51.1%, 64.9% after freezing. So, the freezing of semen has affected the progressive motility and viability. The progressive motility and viability of Fawn Jindo-dog's semen, before and after freezing, were better than White Jindo-dog. And No. 2 Fawn Jindo-dog showed the best results and showed significantly different among all dogs (P<0.05). 3. The 44 times-tested .esults by CASA system were as follow; MOT (motility) 65.6%. PROG (progressive motility) 54.8%, VAP (average path velocity) 75.3 ${\mu}{\textrm}{m}$/sec, VCL (curve linear velocity) 90.0 ${\mu}{\textrm}{m}$/sec, VSL (straight-line velocity) 69.4 ${\mu}{\textrm}{m}$/sec and ALH (amplitude of lateral head displacement) 4.4 ${\mu}{\textrm}{m}$. Although the motion characteristic of frozen semen were not significantly different between White and Fawn Jindo-dog, No. 2 Fawn Jindo-dog showed the best results and was significantly different among all dogs (P<0.05). 4. The success rate of frozen semen production between White and Fawn Jindo-dog were 43% (13/28), 94% (33/35), respectively, and the total success rate was 73% (46/63). The freezing-ability of Fawn Jindo-dog's semen was better than the other. Conclusively, the present results indicated that the characteristic and motility of Jindo-dog') semen were suitable for processing frozen semen, artificial insemination and mass production system. Also, the selection of suitable dog-breed was so important because the characteristic and freezing-ability of semen were significantly different between White and Fawn Jindo-dogs and among all individual dogs.

Comparison of Helical TomoTherapy with Linear Accelerator Base Intensity-modulated Radiotherapy for Head & Neck Cases (두경부암 환자에 대한 선량체적 히스토그램에 따른 토모치료외 선형가속기기반 세기변조방사선치료의 정량적 비교)

  • Kim, Dong-Wook;Yoon, Myong-Geun;Park, Sung-Yong;Lee, Se-Byeong;Shin, Dong-Ho;Lee, Doo-Hyeon;Kwak, Jung-Won;Park, So-Ah;Lim, Young-Kyung;Kim, Jin-Sung;Shin, Jung-Wook;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.

  • PDF

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Development of Ankle Power Assistive Robot using Pneumatic Muscle (공압근육을 사용한 발목근력보조로봇의 개발)

  • Kim, Chang-Soon;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.771-782
    • /
    • 2017
  • This paper describes the development of a wearable robot to assist ankle power for the elderly. Previously developed wearable robots have generally used motors and gears to assist muscle power during walking. However, the combination of motor and reduction gear is heavy and has limitations on the simultaneous control of stiffness and torque due to the friction of the gear reducer unlike human muscles. Therefore, in this study, Mckibben pneumatic muscle, which is lighter, safer, and more powerful than an electric motor with gear, was used to assist ankle joint. Antagonistic actuation using a pair of pneumatic muscles assisted the power of the soleus muscles and tibialis anterior muscles used for the pitching motion of the ankle joint, and the model parameters of the antagonistic actuator were experimentally derived using a muscle test platform. To recognize the wearer's walking intention, foot load and ankle torque were calculated by measuring the pressure and the center of pressure of the foot using force and linear displacement sensors, and the stiffness and the torque of the pneumatic muscle joint were then controlled by the calculated ankle torque and foot load. Finally, the performance of the developed ankle power assistive robot was experimentally verified by measuring EMG signals during walking experiments on a treadmill.