• Title/Summary/Keyword: Linear Motion Error

Search Result 207, Processing Time 0.027 seconds

A Realtime Expression Control for Realistic 3D Facial Animation (현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어)

  • Kim Jung-Gi;Min Kyong-Pil;Chun Jun-Chul;Choi Yong-Gil
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2006
  • This work presents o novel method which extract facial region und features from motion picture automatically and controls the 3D facial expression in real time. To txtract facial region and facial feature points from each color frame of motion pictures a new nonparametric skin color model is proposed rather than using parametric skin color model. Conventionally used parametric skin color models, which presents facial distribution as gaussian-type, have lack of robustness for varying lighting conditions. Thus it needs additional work to extract exact facial region from face images. To resolve the limitation of current skin color model, we exploit the Hue-Tint chrominance components and represent the skin chrominance distribution as a linear function, which can reduce error for detecting facial region. Moreover, the minimal facial feature positions detected by the proposed skin model are adjusted by using edge information of the detected facial region along with the proportions of the face. To produce the realistic facial expression, we adopt Water's linear muscle model and apply the extended version of Water's muscles to variation of the facial features of the 3D face. The experiments show that the proposed approach efficiently detects facial feature points and naturally controls the facial expression of the 3D face model.

  • PDF

Design and Control of Ultra-precision Dual Stage with Air bearings and Voice coil motor for nm scanning system (나노 정밀도 스캐닝 용 공기베어링과 보이스 코일 모터의 초정밀 이중 스테이지 설계 및 제어)

  • Kim K.H.;Choi Y.M.;Kim J.J.;Lee M.G.;Lee S.W.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1883-1886
    • /
    • 2005
  • In this paper, a decoupled dual servo (DDS) stage for ultra-precision scanning system with large working range is introduced. In general, dual servo systems consist of a fine stage for short range and a coarse stage for long range. The proposed DDS also consists of a $XY\theta$ fine stage for handling and carrying workpieces and one axis coarse stage. Its coarse stage consists of air bearing guide system and a coreless linear motor with force ripple. The fine has four voice coil motors(VCM) as its actuator. According to a VCM's nature, there are no mechanical connections between coils and magnetic circuits. Moreover, VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about $25mm^2$. To break that hurdle, the coarse stage with linear motors is used to move the fine about 500mm. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. With MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. And for their movements without any frictions, guide systems of the DDS are composed of air bearings. To get precisely their positions, a linear scale with 5nm resolution are used for the coarse stage's motion and three plane mirror laser interferometers with 5nm for the fine's $XY\theta$ motions. With them, on scanning the two stages have same trajectories. The control algorithm is named Parallel method. The embodied ultra-precision scanning system has sub 100nm following error and in-positioning stability.

  • PDF

A study on the design exploration of Optical Image Stabilization (OIS) for Smart phone (스마트폰을 위한 광학식 손떨림 보정 설계 탐색에 관한 연구)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1603-1615
    • /
    • 2018
  • In order to achieve the low complexity and area, power in the design of Optical Image Stabilization (OIS) suitable for the smart phone, this paper presents the following design explorations, such as; optimization of gyroscope sampling rate, simple and accurate gyroscope filters, and reduced operating frequency of motion compensation, optimized bit width in ADC and DAC, evaluation of noise effects due to PWM driving. In experiments of gyroscope sampling frequencies, it is found that error values are unvaried in the frequency above 5KHz. The gyroscope filter is efficiently designed by combining the Fuzzy algorithm, to illustrate the reasonable compensation for the angle and phase errors. Further, in the PWM design, the power consumption of 2MHz driving is shown to decrease up to 50% with respect to the linear driving, and the imaging noises are reduced in the driving frequency above 2MHz driving frequency. The operating frequency could be reduced to 5KHz in controller and 10KHz in driver, respectively, in the motion compensation. For ADC and DAC, the optimized exploration experiments verify the minimum bit width of 11bits in ADC as well as 10bits in DAC without the performance degradation.

Development of Line Standards Measurement System Using an Optical Microscope (광학 현미경을 이용한 선표준물 측정 시스템 개발)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.72-78
    • /
    • 2009
  • We developed a line standards measurement system using an optical microscope and measured two kinds of line standards. It consists of three main parts: an optical microscope module including a CCD camera, a stage system with a linear encoder, and a measurement program for a microscopic image processing. The magnification of microscope part was calibrated using one-dimensional gratings and the angular motion of stage was measured to estimate the Abbe error. The threshold level in line width measurement was determined by comparing with certified values of a line width reference specimen, and its validity was proved through the measurement of another line width specimen. The expanded uncertainty (k=2) was about 100 nm in the measurements of $1{\mu}m{\sim}10{\mu}m$ line width. In the comparison results of line spacing measurement, two kinds of values were coincide within the expanded uncertainty, which were obtained by the one-dimensional measuring machine in KRISS and the line standards measurement system. The expanded uncertainty (k=2) in the line spacing measurement was estimated as $\sqrt{(0.098{\mu}m)^2+(1.8{\times}10^{-4}{\times}L)^2}$. Therefore, it will be applied effectively to the calibration of line standards, such as line width and line spacing, with the expanded uncertainty of several hundreds nanometer.

Extended Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequence (동영상에서의 확장된 시공간 적응적 Auto-regressive 모델의 연구)

  • Doo, Seok-Joo;Kang, Moon-Gi
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.54-59
    • /
    • 1999
  • In this paper, a generalized auto-regressive(AR) model is proposed for linear prediction based on adaptive spatio-temporal support region(ASTSR). The conventional AR model suffers from the drawback that the prediction error increases in the edge region because the rectangular support region of the edge does not satisfy the stationary assumption. Thus, the proposed approach puts an emphasis on the formulation of a spatio-temporally adaptive support region for the AR model, called ASTSR. The ASTSR consists of two parts: the adaptive spatial support region(ASSR) connected with edges and the adaptive temporal support region(ATSR) related to temporal discontinuities. The AR model based on ASTSR not only produces more accurate model parameters but also reduces the computational complexity in the motion picture restoration.

  • PDF

Iris Image Enhancement for the Recognition of Non-ideal Iris Images

  • Sajjad, Mazhar;Ahn, Chang-Won;Jung, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1904-1926
    • /
    • 2016
  • Iris recognition for biometric personnel identification has gained much interest owing to the increasing concern with security today. The image quality plays a major role in the performance of iris recognition systems. When capturing an iris image under uncontrolled conditions and dealing with non-cooperative people, the chance of getting non-ideal images is very high owing to poor focus, off-angle, noise, motion blur, occlusion of eyelashes and eyelids, and wearing glasses. In order to improve the accuracy of iris recognition while dealing with non-ideal iris images, we propose a novel algorithm that improves the quality of degraded iris images. First, the iris image is localized properly to obtain accurate iris boundary detection, and then the iris image is normalized to obtain a fixed size. Second, the valid region (iris region) is extracted from the segmented iris image to obtain only the iris region. Third, to get a well-distributed texture image, bilinear interpolation is used on the segmented valid iris gray image. Using contrast-limited adaptive histogram equalization (CLAHE) enhances the low contrast of the resulting interpolated image. The results of CLAHE are further improved by stretching the maximum and minimum values to 0-255 by using histogram-stretching technique. The gray texture information is extracted by 1D Gabor filters while the Hamming distance technique is chosen as a metric for recognition. The NICE-II training dataset taken from UBRIS.v2 was used for the experiment. Results of the proposed method outperformed other methods in terms of equal error rate (EER).

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

In-House Developed Surface-Guided Repositioning and Monitoring System to Complement In-Room Patient Positioning System for Spine Radiosurgery

  • Kim, Kwang Hyeon;Lee, Haenghwa;Sohn, Moon-Jun;Mun, Chi-Woong
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.40-49
    • /
    • 2021
  • Purpose: This study aimed to develop a surface-guided radiosurgery system customized for a neurosurgery clinic that could be used as an auxiliary system for improving the accuracy, monitoring the movements of patients while performing hypofractionated radiosurgery, and minimizing the geometric misses. Methods: RGB-D cameras were installed in the treatment room and a monitoring system was constructed to perform a three-dimensional (3D) scan of the body surface of the patient and to express it as a point cloud. This could be used to confirm the exact position of the body of the patient and monitor their movements during radiosurgery. The image from the system was matched with the computed tomography (CT) image, and the positional accuracy was compared and analyzed in relation to the existing system to evaluate the accuracy of the setup. Results: The user interface was configured to register the patient and display the setup image to position the setup location by matching the 3D points on the body of the patient with the CT image. The error rate for the position difference was within 1-mm distance (min, -0.21 mm; max, 0.63 mm). Compared with the existing system, the differences were found to be as follows: x=0.08 mm, y=0.13 mm, and z=0.26 mm. Conclusions: We developed a surface-guided repositioning and monitoring system that can be customized and applied in a radiation surgery environment with an existing linear accelerator. It was confirmed that this system could be easily applied for accurate patient repositioning and inter-treatment motion monitoring.

The Effect of MLC Leaf Motion Constraints on Plan Quality and Delivery Accuracy in VMAT (체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Lee, Jeong-woo;Shin, Young-Joo;Kang, Dong-Jin;Jung, Jae-Yong
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to evaluate the dose distribution by gantry rotation and MLC moving speed on treatment planning system(TPS) and linear accelerator. The dose analyzer phantom(Delta 4) was scanned by CT simulator for treatment planning. The planning target volumes(PTVs) of prostate and pancreas was prescribed 6,500 cGy, 5,000 cGy on VMAT(Volumetric Modulated Arc Therapy) by TPS while MLC speed changed. The analyzer phantom was irradiated linear accelerator using by planned parameters. Dose distribution of PTVs were evaluated by the homogeneity index, conformity index, dose volume histogram of organ at risk(rectum, bladder, spinal cord, kidney). And irradiated dose analysis were evaluated dose distribution and conformity by gamma index. The PTV dose of pancreas was 4,993 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(5,000 cGy). The dose of spinal cord, left kidney, and right kidney were accessed the lowest during 0.1 cm/deg, 1.5 cm/deg, 0.3 cm/deg. The PTV dose of prostate was 6,466 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(6,500 cGy). The dose of bladder and rectum were accessed the lowest during 0.3 cm/deg, 2.0 cm/deg. For gamma index, pancreas and prostate were analyzed the lowest error 100% at 0.8, 1.0 cm/deg and 99.6% at 0.3, 0.5 cm/deg. We should used the optimal leaf speed according to the gantry rotation if the treatment cases are performed VMAT.

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF