• Title/Summary/Keyword: Linear Models

Search Result 3,332, Processing Time 0.03 seconds

Improvement of WRF forecast meteorological data by Model Output Statistics using linear, polynomial and scaling regression methods

  • Jabbari, Aida;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.147-147
    • /
    • 2019
  • The Numerical Weather Prediction (NWP) models determine the future state of the weather by forcing current weather conditions into the atmospheric models. The NWP models approximate mathematically the physical dynamics by nonlinear differential equations; however these approximations include uncertainties. The errors of the NWP estimations can be related to the initial and boundary conditions and model parameterization. Development in the meteorological forecast models did not solve the issues related to the inevitable biases. In spite of the efforts to incorporate all sources of uncertainty into the forecast, and regardless of the methodologies applied to generate the forecast ensembles, they are still subject to errors and systematic biases. The statistical post-processing increases the accuracy of the forecast data by decreasing the errors. Error prediction of the NWP models which is updating the NWP model outputs or model output statistics is one of the ways to improve the model forecast. The regression methods (including linear, polynomial and scaling regression) are applied to the present study to improve the real time forecast skill. Such post-processing consists of two main steps. Firstly, regression is built between forecast and measurement, available during a certain training period, and secondly, the regression is applied to new forecasts. In this study, the WRF real-time forecast data, in comparison with the observed data, had systematic biases; the errors related to the NWP model forecasts were reflected in the underestimation of the meteorological data forecast by the WRF model. The promising results will indicate that the post-processing techniques applied in this study improved the meteorological forecast data provided by WRF model. A comparison between various bias correction methods will show the strength and weakness of the each methods.

  • PDF

Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning (다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1711-1720
    • /
    • 2020
  • Particulate matter (PM) that has been artificially generated during the recent of rapid industrialization and urbanization moves and disperses according to weather conditions, and adversely affects the human skin and respiratory systems. The purpose of this study is to predict the PM10 concentration in Seoul using meteorological factors as input dataset for multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models, and compared and evaluated the performance of the models. First, the PM10 concentration data obtained at 39 air quality monitoring sites (AQMS) in Seoul were divided into training and validation dataset (8:2 ratio). The nine meteorological factors (mean, maximum, and minimum temperature, precipitation, average and maximum wind speed, wind direction, yellow dust, and relative humidity), obtained by the automatic weather system (AWS), were composed to input dataset of models. The coefficients of determination (R2) between the observed PM10 concentration and that predicted by the MLR, SVM, and RF models was 0.260, 0.772, and 0.793, respectively, and the RF model best predicted the PM10 concentration. Among the AQMS used for model validation, Gwanak-gu and Gangnam-daero AQMS are relatively close to AWS, and the SVM and RF models were highly accurate according to the model validations. The Jongno-gu AQMS is relatively far from the AWS, but since PM10 concentration for the two adjacent AQMS were used for model training, both models presented high accuracy. By contrast, Yongsan-gu AQMS was relatively far from AQMS and AWS, both models performed poorly.

Credibility estimation via kernel mixed effects model

  • Shim, Joo-Yong;Kim, Tae-Yoon;Lee, Sang-Yeol;Hwa, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.445-452
    • /
    • 2009
  • Credibility models are actuarial tools to distribute premiums fairly among a heterogeneous group of policyholders. Many existing credibility models can be expressed as special cases of linear mixed effects models. In this paper we propose a nonlinear credibility regression model by reforming the linear mixed effects model through kernel machine. The proposed model can be seen as prediction method applicable in any setting where repeated measures are made for subjects with different risk levels. Experimental results are then presented which indicate the performance of the proposed estimating procedure.

  • PDF

Teaching and Learning Models for Mathematics using Mathematica (I)

  • Kim, Hyang-Sook
    • Research in Mathematical Education
    • /
    • v.7 no.2
    • /
    • pp.101-117
    • /
    • 2003
  • In this paper, we give examples of models we have created for use in university mathematics courses. We explain the concept of linear transformation, investigate the roles of each component of 2 ${\times}$ 2 and 3 ${\times}$ 3 transformation matrices, consider the relation between sound and trigonometry, visualize the Riemann sum, the volume of surfaces of revolution and the area of unit circle. This paper illustrates how one can use Mathematica to visualize abstract mathematical concepts, thus enabling students to understand mathematics problems effectively in class. Development of these kinds of teaching and learning models can stimulate the students' curiosity about mathematics and increase their interest.

  • PDF

Statistical analysis of KNHANES data with measurement error models

  • Hwang, Jinseub
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.773-779
    • /
    • 2015
  • We study a statistical analysis about the fifth wave data of the Korea National Health and Nutrition Examination Survey based on linear regression models with measurement errors. The data is obtained from a national population-based complex survey. To demonstrate the availability of measurement error models, two results between the general linear regression model and measurement error model are compared based on the model selection criteria which are Akaike information criterion and Bayesian information criterion. For our study, we use the simulation extrapolation algorithm for measurement error model and the jackknife method for the estimation of standard errors.

Study on Effective Lane Detection Using Hough Transform and Lane Model (허프변환과 차선모델을 이용한 효과적인 차선검출에 관한 연구)

  • Kim, Gi-Seok;Lee, Jin-Wook;Cho, Jae-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.34-36
    • /
    • 2009
  • This paper proposes an effective lane detection algorithm using hugh transform and lane model. The proposed lane detection algorithm includes two major components, i.e., lane marks segmentation and an exact lane extraction using a novel postprocessing technique. The first step is to segment lane marks from background images using HSV color model. Then, a novel postprocessing is used to detect an exact lane using Hugh transform and lane models(linear and curved lane models). The postprocessing consists of three parts, i.e, thinning process, Hugh Transform and filtering process. We divide input image into three regions of interests(ROIs). Based on lane curve function(LCF), we can detect an exact lane from various extracted lane lines. The lane models(linear and curved lane mode]) are used in order to judge whether each lane segment is fit or not in each ROIs. Experimental results show that the proposed scheme is very effective in lane detection.

  • PDF

Methods and Techniques for Variance Component Estimation in Animal Breeding - Review -

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.3
    • /
    • pp.413-422
    • /
    • 2000
  • In the class of models which include random effects, the variance component estimates are important to obtain accurate predictors and estimators. Variance component estimation is straightforward for balanced data but not for unbalanced data. Since orthogonality among factors is absent in unbalanced data, various methods for variance component estimation are available. REML estimation is the most widely used method in animal breeding because of its attractive statistical properties. Recently, Bayesian approach became feasible through Markov Chain Monte Carlo methods with increasingly powerful computers. Furthermore, advances in variance component estimation with complicated models such as generalized linear mixed models enabled animal breeders to analyze non-normal data.

Maximum Likelihood Estimation Using Laplace Approximation in Poisson GLMMs

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.971-978
    • /
    • 2009
  • Poisson generalized linear mixed models(GLMMs) have been widely used for the analysis of clustered or correlated count data. For the inference marginal likelihood, which is obtained by integrating out random effects is often used. It gives maximum likelihood(ML) estimator, but the integration is usually intractable. In this paper, we propose how to obtain the ML estimator via Laplace approximation based on hierarchical-likelihood (h-likelihood) approach under the Poisson GLMMs. In particular, the h-likelihood avoids the integration itself and gives a statistically efficient procedure for various random-effect models including GLMMs. The proposed method is illustrated using two practical examples and simulation studies.

Finite Population Prediction under Multiprocess Dynamic Generalized Linear Models

  • Kim, Dal-Ho;Cha, Young-Joon;Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.329-340
    • /
    • 1999
  • We consider a Bayesian forcasting method for the analysis of repeated surveys. It is assumed that the parameters of the superpopulation model at each time follow a stochastic model. We propose Bayesian prediction procedures for the finite population total under multiprocess dynamic generalized linear models. The multiprocess dynamic model offers a powerful framework for the modelling and analysis of time series which are subject to a abrupt changes in pattern. Some numerical studies are provided to illustrate the behavior of the proposed predictors.

  • PDF

A HGLM framework for Meta-Analysis of Clinical Trials with Binary Outcomes

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1429-1440
    • /
    • 2008
  • In a meta-analysis combining the results from different clinical trials, it is important to consider the possible heterogeneity in outcomes between trials. Such variations can be regarded as random effects. Thus, random-effect models such as HGLMs (hierarchical generalized linear models) are very useful. In this paper, we propose a HGLM framework for analyzing the binominal response data which may have variations in the odds-ratios between clinical trials. We also present the prediction intervals for random effects which are in practice useful to investigate the heterogeneity of the trial effects. The proposed method is illustrated with a real-data set on 22 trials about respiratory tract infections. We further demonstrate that an appropriate HGLM can be confirmed via model-selection criteria.

  • PDF