• Title/Summary/Keyword: Linear Demand Function

Search Result 84, Processing Time 0.031 seconds

A Study on Determination of Optimal Incentives of DSM Programs by Linear Programming (선형계획법에 의한 수요관리 프로그램의 최적 지원금 결정에 관한 연구)

  • Lee, Byung-Ha;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.517-523
    • /
    • 2011
  • A lot of DSM (Demand Side Management) programs have been implemented to promote the effective utilization of resources and the rational development of power industry, and various economic analyses and policy-based studies on DSM have been executed to determine effective subsidy budget. In this paper, a new objective function for deciding an optimal incentive allocation among various programs is presented by introducing the maximization of the total saving power of the programs. For simplicity, the objective function and the constraints is linearized to apply LP(Linear Programming) method. LP program based on Simplex Method was developed by MATLAB. An optimal incentive allocation of 4 DSM programs is presented by the use of the developed MATLAB program.

Distribution Center Location and Routing Problem with Demand Dependent on the Customer Service (고객서비스에 따른 수요변화하에서의 분배센터 입지선정과 경로 문제)

  • 오광기;이상용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.29-40
    • /
    • 1999
  • The distribution center location and routing problem involves interdependent decisions among facility, transportation, and inventory decisions. The design of distribution system affects the customers' purchase decision by sets the level of customer service to be offered. Thus the lower product availability may cause a loss of demand as falls off the customers' purchase intention, and this is related to the firm's profit reduction. This study considers the product availability of the distribution centers as the measure of the demand level change of the demand points, and represents relation between customer service and demand level with linear demand function. And this study represents the distribution center location and routing to demand point in order to maximize the total profit that considers the products' sales revenue by customer service, the production cost and the distribution system related costs.

  • PDF

Buyer's Price and Inventory Policy with Price Dependent Demand for Decaying Items Day terms Supplier Credit in a Two-stage Supply Chain

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.151-162
    • /
    • 2018
  • In deriving the economic order quantity (EOQ) formula, it is tacitly assumed that the buyer has to pay product price while receiving the product from the supplier. However, as a marketing policy, some suppliers permit a delay in payments to the buyers to increase demand for the product they made. Credit transactions would have a positive effect on both suppliers and buyers. For a supplier who offers trade credit, it is an effective means of price differentiation to increase the demand for the product. Availability of opportunity to delay the payment in buyer effectively reduces the cost of holding stocks and therefore, the buyer has a lot of price options to choose his sales price for a customer. Since the buyer's order is affected by the customer's demand, the problems of determining the sales price and EOQ are interdependent and must be solved simultaneously. From this perspective, this paper evaluates the problem of determining the optimal sales price and EOQ for the buyer at the same time when the supplier allows a delay in payments for the product whose demand is represented as a function that decreases linearly with the sales price. For the analysis, it is also assumed that inventory is exhausted not only by customer's but also by decay.

Point-to-Multipoint Minimum Cost Flow Problem with Convex Cost Function (콘벡스 비용함수를 갖는 점-대-다중점 최소비용 흐름문제)

  • 박구현;신용식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.15-25
    • /
    • 2000
  • In this paper, we introduce a point-to-multipoint minimum cost flow problem with convex and demand splitting. A source node transmits the traffic along the tree that includes members of the point-to-multipoint connection. The traffic is replicated by the nodes only at branch points of the tree. In order to minimize the sum of arc costs, we assume that the traffic demand can be splitted and transmitted to destination nodes along different trees. If arc cost is linear, the problem would be a Steiner tree problem in networks eve though demand splitting is permitted. The problem would be applied in transmitting large volume of traffic from a serve to clients in Internet environments. Optimality conditions of the problem are presented in terms of fair tree routing. The proposed algorithm is a finite terminating algorithm for $\varepsilon$-optimal solution. convergence of the algorithm is obtained under monotonic condition and strict convexity of the cost function. Computational experiences are included.

  • PDF

A Study on a Multi-period Inventory Model with Quantity Discounts Based on the Previous Order (주문량 증가에 따른 할인 정책이 있는 다기간 재고 모형의 해법 연구)

  • Lim, Sung-Mook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.53-62
    • /
    • 2009
  • Lee[15] examined quantity discount contracts between a manufacturer and a retailer in a stochastic, two-period inventory model where quantity discounts are provided based on the previous order size. During the two periods, the retailer faces stochastic (truncated Poisson distributed) demands and he/she places orders to meet the demands. The manufacturer provides for the retailer a price discount for the second period order if its quantity exceeds the first period order quantity. In this paper we extend the above two-period model to a k-period one (where k < 2) and propose a stochastic nonlinear mixed binary integer program for it. In order to make the program tractable, the nonlinear term involving the sum of truncated Poisson cumulative probability function values over a certain range of demand is approximated by an i-interval piecewise linear function. With the value of i selected and fixed, the piecewise linear function is determined using an evolutionary algorithm where its fitness to the original nonlinear term is maximized. The resulting piecewise linear mixed binary integer program is then transformed to a mixed binary integer linear program. With the k-period model developed, we suggest a solution procedure of receding horizon control style to solve n-period (n < k) order decision problems. We implement Lee's two-period model and the proposed k-period model for the use in receding horizon control style to solve n-period order decision problems, and compare between the two models in terms of the pattern of order quantities and the total profits. Our computational study shows that the proposed model is superior to the two-period model with respect to the total profits, and that order quantities from the proposed model have higher fluctuations over periods.

Sensitivity Analysis for Joint Pricing and Lot-sizing Model with Price Dependent Demand under Day terms Supplier Credit in a Two-stage Supply Chain

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.270-276
    • /
    • 2020
  • In this paper, we analyze the buyer's joint pricing and lot-sizing model in a two-stage supply chain consisting of the supplier, the buyer and the customer. It is assumed that the supplier will permit a certain fixed period for settling the amount the buyer owes to him for the items supplied in order to stimulate the demand for the product. Generally, credit transactions would have a positive effect to the buyer. The availability of credit transactions from the supplier effectively reduces the cost of holding stocks for the buyer and therefore, the buyer has a lot of price options to choose his sales price for a customer in anticipation of increased the customer's demand and, as a result, it will appear to increase the buyer's inventory levels. On the other hand, in the case of decaying products in which their utility decay over time, the decaying rate with time may be expected to reduce inventory levels. In this regard, we need to analyze how much the length of credit period and the decaying rate affect the buyer's pricing and lot-sizing policy. For the analysis, we consider the situation where the customer's demand is represented as a linearly decreasing function of the buyer's sales price. From this perspective, we formulate the buyer's annual net profit and analyze the effect of the length of credit period and decaying rate of the product on the buyer's inventory policy numerically.

An Analysis of the Price Elasticity of Electricity Demand and Price Reform in the Korean Residential Sector Under Block Rate Pricing (구간별 가격체계를 고려한 우리나라 주택용 전력수요의 가격탄력성과 전력누진요금제 조정방안)

  • Jo, Ha-Hyun;Jang, Min-Woo
    • Environmental and Resource Economics Review
    • /
    • v.24 no.2
    • /
    • pp.365-410
    • /
    • 2015
  • Block-rate structures are widely used in utility-pricing, including the Korean residential electricity sector. In the case of the current pricing structure, Korean citizens are highly concerned about incurring excessive electricity costs. For these reasons, there have been many discussions concerning mitigation of the strict pricing structure. Existing studies on the residential electricity demand function under block-rate structure have the following three issues - the consumer's budget constraint is non-linear, perceived price under block-rate structure is uncertain, block-rate structure has endogeneity in the price variable. In this context, this paper estimates the residential electricity demand function using micro-level household expenditure data and simulates the impact of alternative block-pricing schedules.

Capacity design by developed pole placement structural control

  • Amini, Fereidoun;Karami, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.147-168
    • /
    • 2011
  • To ensure safety and long term performance, structural control has rapidly matured over the past decade into a viable means of limiting structural responses to strong winds and earthquakes. Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this investigation, application of improved capacity demand diagram method in the control of structural system is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function that defines values of coefficient matrices providing the placement of actuators and optimal control forces. The ground acceleration is modified under induced control forces. Due to this, performance of structure based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure. With small energy consumption characteristics, semi-active devices are especially attractive solutions for limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure employing the semi-active control devices is applied. In comparison to the widely used linear quadratic regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of structural responses during large earthquakes.

The Optimal Design Rectifying Inspection Plan with Application to Linear Cost Model (선형비용모델을 이용한 계수선별형 검사방식의 최적설계)

  • Cho, Jai-Rip
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.4
    • /
    • pp.74-89
    • /
    • 1995
  • In recent years, the safety of customers and the demand for rights to be protected from the risk have become stronger than ever day by day, and the function concerning product liability(PL) and quality assurance(QA) has been emphasized. Basically these functions can be obtained by inspection and there is the single rectifying sampling inspection for attribute (KSA-3105) as an existing method. But we can not say this method is good enough because of limitations in the range of applications and the approximate design of inspection methods which can not meet the rapidity and accuracy of quality information transfer according to the maturity of information period. Therefore, in this paper, a new algorithm is developed which can design the accurate inspection method by using the linear cost function that has not been considered in the existing inspection methods. Also in addition to this, a optimal rectifying sampling inspection plan, contributing to minimize the total costs, can be developed by programming the algorithm developed in this study and it can be applied to any field having many processes almost limitlessly.

  • PDF

Strategic Pricing Framework for Closed Loop Supply Chain with Remanufacturing Process using Nonlinear Fuzzy Function (재 제조 프로세스를 가진 순환 형 SCM에서의 비선형 퍼지 함수 기반 가격 정책 프레임웍)

  • Kim, Jinbae;Kim, Taesung;Lee, Hyunsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.29-37
    • /
    • 2017
  • This papers focuses on remanufacturing processes in a closed loop supply chain. The remanufacturing processes is considered as one of the effective strategies for enterprises' sustainability. For this reason, a lot of companies have attempted to apply remanufacturing related methods to their manufacturing processes. While many research studies focused on the return rate for remanufacturing parts as a control parameter, the relationship with demand certainties has been studied less comparatively. This paper considers a closed loop supply chain environment with remanufacturing processes, where highly fluctuating demands are embedded. While other research studies capture uncertainties using probability theories, highly fluctuating demands are modeled using a fuzzy logic based ambiguity based modeling framework. The previous studies on the remanufacturing have been limited in solving the actual supply chain management situation and issues by analyzing the various situations and variables constituting the supply chain model in a linear relationship. In order to overcome these limitations, this papers considers that the relationship between price and demand is nonlinear. In order to interpret the relationship between demand and price, a new price elasticity of demand is modeled using a fuzzy based nonlinear function and analyzed. This papers contributes to setup and to provide an effective price strategy reflecting highly demand uncertainties in the closed loop supply chain management with remanufacturing processes. Also, this papers present various procedures and analytical methods for constructing accurate parameter and membership functions that deal with extended uncertainty through fuzzy logic system based modeling rather than existing probability distribution based uncertainty modeling.