• Title/Summary/Keyword: Linear Curvature

Search Result 242, Processing Time 0.026 seconds

A numerical study on feasibility of the circled fiber reinforced polymer (FRP) panel for a tunnel lining structure (터널 라이닝 구조체로서 곡면 섬유강화 복합재료의 적용성 검토를 위한 수치해석적 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.451-461
    • /
    • 2010
  • Utilization of the fiber reinforced polymer (FRP) material has been enlarged as a substitution material to the general construction materials having certain long-term problems such as corrosion, etc. However, it could be difficult to apply the FRP material, which has a linear shape generally, to an arch-shaped tunnel structure. Therefore, an attempt has been made in this study to develop a device to form a designed cross section of FRP material by pulling out with a curvature. A sample of the circled FRP product was successfully produced and then the sample has been tested to identify its physical characteristics. Then, intensive feasibility studies on the circled FRP panel to be used for a tunnel lining structure have been carried out by numerical analyses. As a result, it appears that the new circled FRP-concrete composite panel has a high capability to be used for a tunnel lining material without any structural problem.

A Study of Parallel Test Among Three ADVIA 2120 System (3대의 ADVIA 2120 System 평행시험에 대한 연구)

  • Chang, Sang-Wu;Cho, Eun-Hae;Kim, Nam-Yong;Chu, Kyung-Bok;Lee, Suk-Jong;Hong, Sung-No;Oh, Jong-Do
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • Parallel testing means ordering a number of tests at the same time so abnormalities in any of the tests can be found quickly and used in making the diagnosis. This is a good medical strategy to eliminate diseases and it is relatively inexpensive if all the tests are potential sources of information and performed on the same analyzer. In regression, the equation for the straight line is recast as y = bx + a. This change in terminology leads to confusion. Here a is the y-intercept or constant and b is the coefficient or slope of the line. A few more words of caution about regression - as in all of statistics there are certain assumptions: the x value is a true measure, both X and Y distributions are normal, and homoscedasticity, i.e., the variance of y is the same for each value of x. In this study the linearity classification made by different scientists were always in agreement. Typical examples of curves that were considered linear are presented in Fig. 1-5. Because these automated procedures values were usually within five percent of each other the curvature could be easily detected. The plot of the WBC, RBC, hemoglobin, hematocrit and platelet concentrations from approximately 74.4 to $0{\times}10^3/{\mu}L$ and $80.4-0{\times}10^3/{\mu}L$, $5.6-0{\times}10^6/{\mu}L$ and $6.1-0{\times}1106/{\mu}L$, 18.3-0 g/dL and 19.0-0 g/dL, 54.1-0% and 56.8-0% and 642.0 to $0.03{\times}10^3{\mu}L$ and $754.0-0{\times}10^3/{\mu}L$ on the ADVIA 2120 C Versus and A and B typical of an acceptable linear study as shown in Fig. 1-5. The grand mean of R2, intercept and slope is 0.99898, 0.99459 and 1.54626.

  • PDF

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.

Dispersion in the Unsteady Separated Flow Past Complex Geometries (복합지형상에서 비정상 박리흐름에 의한 확산)

  • Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.512-527
    • /
    • 2001
  • Separated flows passed complex geometries are modeled by discrete vortex techniques. The flows are assumed to be rotational and inviscid, and a new techlnique is described to determine the stream functions for linear shear profiles. The geometries considered are the snow cornice and the backward-facing step, whose edges allow for the separation of the flow and reattachment downstream of the recirculation regions. A point vortex has been added to the flows in order to constrain the separation points to be located at the edges, while the conformal mappings have been modified in order to smooth the sharp edges and to let the separation points free to oscillate around the points of maximum curvature. Unsteadiness is imposed to the flow by perturbing the vortex location, either by displacing the vortex from the equilibrium, or by imposing a random perturbation with zero mean to the vortex in equilibrium. The trajectories of passive scalars continuously released upwind of the separation point and trapped by the recirculating bubble are numerically integrated, and concentration time series are calculated at fixed locations downwind of the reattachment points. This model proves to be capable of reproducing the trapping and intermittent release of scalars, in agreement with the simulation of the flow passed a snow cornice performed by a discrete multi-vortex model, as well as with direct numerical simulations of the flow passed a backward-facing step. The results of simulation indicate that for flows undergoing separation and reattachment the unsteadiness of the recirculating bubble is the main mechanism responsible for the intense large-scale concentration fluctuations downstream.

  • PDF

Surface Elevation Recovery Methods from Pressure Gage for Irregular Waves (불규칙파(不規則波에) 대한 압력식(壓力式) 파고계(波高計)의 적용성(適用性)에 관한 연구(研究))

  • Kwon, Jung Gon;Kang, Ju Bok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.129-136
    • /
    • 1992
  • A precedure for recovering surface displacement from a time series of pressure measured by a pressure gage in a shallow water (that is, FFTM, LCM. IWM) is investigated with respect to a proper cut-off-frequency of a frequency response function for the accurate recovery of wave height and period. The authors examined the applicability of above mentioned three transformation procedures through field observations and laboratory experiments and the following results are obtained. i) The cut-off-frequency of the frequency response function used in FFTM is deeply depend on both the frequency response of the pressure sensor and the water depth at the sensor. In this study, a relatively accurate surface displacement can be recovered when the frequency response function is cut off at the frequency corresponding to kh=3.0 where k is a wave number at the depth of h. The frequency response function in the region higher than the cut-off-frequency is set constant to be the value at the cut-off-frequency. ii) The transformed surface displacements by LCM are affected by the small waves of short periods included in the measured pressure. It is found that pressure variation whose local frequency is higher than kh=1.5 has to be neglected to recover surface displacement sufficiently. iii) In IWM, the linear pressure response function is usually utilized by multiplying a coefficient N which is a function of the frequency (or kh) and takes a value around unity. However, in this study, a constant value of N(=1.0) gives a relatively accurate recovery of surface displacements.

  • PDF

Changes of Head Posture in Standing and Sitting Posture (서 있는 자세와 앉은 자세에서 두부자세의 변화)

  • Sang-Chan Lee;Kyung-Soo Han;Myung-Seok Seo
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.2
    • /
    • pp.305-315
    • /
    • 1996
  • This study was performed to investigate the changes of head posture according to natural standing or sitting posture. Twenty seven healthy dental students without any signs and symptoms of temporomandibular disorders participated in this study. Cervical resting posture (CRP) of the head in sagittal plane was measured by Cervical-Range-of-Motion $^\textregistered$(CROM, U.S.A.) and lateral cephalograph was taken in natural posture. The items related to angle in cephalograph were the angles of cranial and cervical inclination to true vertical line(VER/NSL, VER/AML), the angles of cervical inclination to nasion-sella line(CVT/NSL, OPT/NSL), the angles of comical inclination to horizontal line(CVT/HOR, OPT/HOR), the angle of cervical lordosis(CVT/OPT). The items related to line measurement were the distance from subocciput to Cl(Dl), Cl to C2(D2), C2 to C3(D3), C3 to C4(D4), the upper(PNS to posterior pharyngeal wall) and the lower(tongue base to posterior pharyngeal wall) pharyngeal space, the distance from nation to mention(Na-Me), and the radius of comical curvature from the first comical vertebra(Cl ) to the fifth cervical vertebra(C5). The data were analyzed with SAS/STAT program. The obtained results were as follows : 1. Most items related to angular measurement showed significant difference between in standing and sitting posture. The angles of CRP, CVT/NSL, OPT/NSL, CVT/HOR, OPT/HOR, and CVT/OPT were high in sitting posture, but the angles of VER/NSL, VER/NSL were low in sitting posture. 2. In vertebral distance, only the distance between C3 and C4 was differed by the posture, which decreased in sitting posture. In sitting posture, the distance from nasion to menton(Na-Me) was longer, but the radius was shorter than in standing posture. 3. Correlationship in angular measurements was almost same in both postures. Ceervical resting posture(CRP) was correlated with VER/NSL, VER\ulcornerNSL was correlated with CRP, CVT/NSL, and OPT/NSL, VER/AML was correlated with CVT/HOR, OPT/HOR, CVT/OPT, and the angle of cervical lordosis(CVT/OPT) was correlated with the radius. 4. Correlationship in linear measurement was observed only in among D3, D4, and radius. And the Na-Me was not correlated with any other items. From this results, The author concluded that the head posture in sitting was mote backward extended than in standing.

  • PDF

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

Construction of Correlation between Basic Soil Properties and Deformation Modulus of Trackbed Soils Based on Laboratory and Field Mechanical Tests (역학적 실내외 시험에 의한 철도궤도 상부노반용 흙재료의 기본물성과 변형계수 상관성 평가)

  • Park, Jae Beom;Choi, Chan Yong;Ji, Sang Hyun;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • The soils used as trackbed in Korea are selected using USCS utilizing basic soil properties such as Grain Size Distribution(GSD), % passing of #200 sieve ($P_{200}$), % passing of #4 sieve ($P_4$), Coefficient of uniformity ($C_u$), and Coefficient of curvature ($C_c$). Degree of compaction of the soils adapted in the code by KR should be evaluated by maximum dry density (${\gamma}_{d-max}$) and deformation modulus $E_{v2}$. The most important influencing factor that is critical to stability and deformation of the compacted soils used as trackbed is stiffness. Thus, it is necessary to construct a correlation between the modulus and the basic soil properties of trackbed soil in order to redefine a new soil classification system adaptable only to railway construction. To construct the relationship, basic soil test data is collected as a database, including GSD, maximum dry unit weight (${\gamma}_{d-max}$), OMC, $P_{200}$, $P_4$, $C_u$, $C_c$, etc.; deformation modulus $E_{v2}$ and $E_{vd}$ are obtained independently by performing a Repeated Plated Bearing Test (RPBT) and Light Weight Deflectometer Test (LWDT) for ten different railway construction sites. A linear regression analysis is performed using SPSS to obtain the relationship between the basic soil properties and the deformation modulus $E_{v2}$ and $E_v$. Based on the constructed relationship and the various obtained mechanical test data, a new soil classification system will be proposed later as a guideline for the design and construction of trackbed foundation in Korea.

Spacing of Intermediate Diaphragms Horizontally Curved Steel Box Girder Bridges considering Bending-distortional Warping Normal Stress Ratio (곡선 강박스 거더의 휨-뒤틀림 응력비에 따른 중간 다이아프램 간격)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Lim, Jeong-Hyun;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6325-6332
    • /
    • 2015
  • Although distortions of horizontally curved box girder are more susceptible than which of the straight girder due to curvature effect, current domestic design standards does not present spacing of intermediate diaphragms for the curved box girder. In this study, parametric studies for straight and curved box girder considering distortional warping normal stresses based on linear finite element analysis were carried out. Single span curved girders were chosen for analysis based on current domestic bridge data with 1-6 of solid intermediate diaphragms, 0-30 degree of subtended angle, 30m and 60m of span length and 2-3m of flange width and web height. The adequate spacing of diaphragms for the box girder were suggested considering subtended angles and bending and distortional warping normal stress ratios with 5%, 10%, 15% and 20%. The analysis results were also compared to a current design standard and suggested spacing of diaphragm were evaluated.