• Title/Summary/Keyword: Linear Configuration

Search Result 434, Processing Time 0.02 seconds

Fundamental studies on thermosolutal convection in mercurous bromide(Hg2Br2) physical vapor transport processes (브로민화 수은(I)(Hg2Br2) 물리적 증착공정에서 온도농도대류의 기초연구)

  • Geug Tae Kim;Moo Hyun Kwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.110-115
    • /
    • 2023
  • During the Hg2Br2 physical vapor transport process, with increasing the partial pressure of component B, PB from 40 Torr to 200 Torr, a unicellular convective flow structures move from the crystal growth region to the center region in the vapor phase. The boundary layer flow is dominant for PB = 40 Torr, and the core region flow is dominant for PB = 200 Torr. The flow in the vapor phase shows a three-dimensional convective flow structure with a single cell (unicellular) for PB = 40 Torr and 200 Torr, exhibits an asymmetrical flow with respect to the x, y central axis under the horizontally oriented configuration with an aspect ratio (length-to-width) of 3 and linear conducting walls. The critical temperature difference between the source and crystal region is about 30 K. The total molar flux of Hg2Br2 increases with the temperature difference until the total molar flux reaches the critical value. At the critical total molar flux, the total molar flux abruptly decreases.

The embryological studies on the interspecific hybrid of ginseng plant (Panax ginseng x P. Quiuquefolium) with special references to the seed abortion (인삼의 종간잡종 Panax ginseng x P Quinquefoilium의 발생학적 연구 특히 결실불능의 원인에 관하여)

  • Jong-Kyu Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.69-86
    • /
    • 1969
  • On the growing of the interspecific hybrid ginseng plant, the phenomena of hybrid vigoures are observed in the root, stem, and leaf, but it can not produce seeds favorably since the ovary is abortive in most cases in interspecific hybrid plants. The present investigation was undertaken in an attempt to elucidate the embryological dses of the seed failure in the interspecific hybrid of ginseng (Panax Ginseng ${\times}$ P. Quinque folium). And the results obtained may be summarized as follows. 1). The vegetative growth of the interspecific hybrid ginseng plant is normal or rather vigorous, but the generative growth is extremely obstructed. 2). Even though the generative growth is interrupted the normal development of ovary tissue of flower can be shown until the stage prior to meiosis. 3). The division of the male gameto-genetic cell and the female gameto-genetic cell are exceedingly irregular and some of them are constricted prior to meiosis. 4). At meiosis in the microspore mother cell of the interspecific hybrid, abnormal division is observed in that the univalent chromosome and chromosome bridge occure. And in most cases, metaphasic configuration is principally presented as 23 II+2I, though rarely 22II+4I is also found. 5). Through the process of microspore and pollen formation of F1, the various developmental phases occur even in an anther loclus. 6). Macro, micro and empty pollen grains occur and the functional pollen is very rare. 7). After the megaspore mother cell stage, the rate of ovule development is, on the whole, delayed but the ovary wall enlargement is nearly normal. 8). Degenerating phenomena of ovules occur from the megaspore mother cell stage to 8-nucleate embryo sac stage, and their beginning time of constricting shape is variously different. 9). The megaspore arrangement in the parent is principally of the linear type, though rarely the intermediate type is also observed, whereas various types, viz, linear, intermediate, Tshape, and I shape can be observed in hybrid. 10). After meiosis, three or five megaspore are some times counted. 11). Charazal end megaspore is generally functional in the parents, whereas, in F1, very rarely one of the center megaspores (the second of the third megaspore) grows as an embryo sac mother cell. 12). In accordance with the extent of irregularity or abnormality in meiosis, division of embryo sac nuclei and embryo sac formation cause more nucellus tissue to remain within th, embryo sac. 13). Even if one reached the stage of embryo sac formation, the embryo sac nuclei are always precarious and they can not be disposed to theil proper, respective position. 14). Within the embryo sac, which is lacking the endospermcell, the 4-celled proembryo, linear arrangement, is observed. 15). Through the above respects, the cause of sterile or seed failure of interspecific hybrid would be presumably as follows, By interspecific crossing gene reassortments takes place and the gene system influences the metabolism by the interference of certain enzyme as media. In the F1 plant, the quantity and quality of chemicals produced by the enzyme system and reaction system are entirely different from the case of the parents. Generally, in order to grow, form, and develop naw parts it is necessary to change the materials and energy with reasonable balance, whereas in the F1 plant the metabolic process becomes abnormal or irregular because of the breakdown of the balancing. Thus the changing of the gene-reaction system causes the alteration of the environmental condition of the gameto-genetic cells in the anther and ovule; the produced chemicals cause changes of oxidatio-reduction potential, PH value, protein denaturation and the polarity, etc. Then, the abnormal tissue growing in the ovule and emdryo sac, inhibition of normal development and storage of some chemicals, especially inhibitor, finally lead to sterility or seed failure. Inconclusion, we may presume that the first cause of sterile or seed abortion in interspecific hybrids is the gene reassortment, and the second is the irregularity of the metabolic system, storage of chemicals, especially inhibitor, the growth of abnormal tissue and the change of the polarity etc, and they finally lead to sexual defect, sterility and seed failure.

  • PDF

Four-Channel Differential CMOS Optical Transimpedance Amplifier Arrays for Panoramic Scan LADAR Systems (파노라믹 스캔 라이다 시스템용 4-채널 차동 CMOS 광트랜스 임피던스 증폭기 어레이)

  • Kim, Sang Gyun;Jung, Seung Hwan;Kim, Seung Hoon;Ying, Xiao;Choi, Hanbyul;Hong, Chaerin;Lee, Kyungmin;Eo, Yun Seong;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, a couple of 4-channel differential transimpedance amplifier arrays are realized in a standard 0.18um CMOS technology for the applications of linear LADAR(laser detection and ranging) systems. Each array targets 1.25-Gb/s operations, where the current-mode chip consists of current-mirror input stage, a single-to-differential amplifier, and an output buffer. The input stage exploits the local feedback current-mirror configuration for low input resistance and low noise characteristics. Measurements demonstrate that each channel achieves $69-dB{\Omega}$ transimpedance gain, 2.2-GHz bandwidth, 21.5-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -20.5-dBm), and the 4-channel total power dissipation of 147.6-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations. Meanwhile, the voltage-mode chip consists of inverter input stage for low noise characteristics, a single-to-differential amplifier, and an output buffer. Test chips reveal that each channel achieves $73-dB{\Omega}$ transimpedance gain, 1.1-GHz bandwidth, 13.2-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -22.8-dBm), and the 4-channel total power dissipation of 138.4-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations.

Experimental and clinical studies with impedance audiometry; the increase in air volume in the middle ear air system and the pneumatization of human temporal bones (측두골의 함기도와 중이강의 용적이 고막 임피던스에 미치는 영향에 관한 연구)

  • 민양기
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1977.06a
    • /
    • pp.4.4-5
    • /
    • 1977
  • The vibratory energy introduced into the external ear canal is changed by the mechanical factors of eardrum itself, the motility of ossicles, and the air cushion of tympanic cavity and the like. This study was designed to investigate the volume of middle ear cavity and mastoid air cell system as a factor of determining the accoustic impedance of middle ear system. The author studied how the increase in air volume of middle ear cavity effects on the acoustic impedance of middle ear system with dogs' ears and researched the correlation between the degree of pneumatization of temporal bones and the acoustic impedance of middle ear system by comparing the radiological findings of pneumatization (Law's and Towne's projection) with the acoustic impedance measurements with Madsen ZO 70. The result is as follows: 1 The tympanometric findings in control state revealed the curves of type A, and did not change in its configuration by the increase in the air volume of dogs middle ear system. 2. The static compliance of middle ear revealed a distinct and linear increase in proportion to the increase in air volume of middle ear system; the rate of increase was $0.05{\pm}0.02$ cc of static compliance per cc of air volume. 3. Authenticated in the above result and the tendency to increase in static compliance in proportion to the increase in the degree of pneumatization of temporal bones, there was significant regression equation between the degree of pneumatization of temporal bones (x variable) and the static compliance of middle ear system; $y=0.19x{\pm}0.16{\pm}0.05$ It is suggested that the difference in volume of middle ear system plays an important role in the change of the static compliance of middle ear, and the author concludes that the measurement of static compliance of middle ear has clinical value as diagnostic means of evaluating the degree of pneumatization of temporal bones along with some radiological examination.

  • PDF