• Title/Summary/Keyword: Linear Buckling

Search Result 382, Processing Time 0.028 seconds

Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices (에너지 소산장치를 장착한 사장교의 지진 취약도 해석)

  • Park, Won-Suk;Kim, Dong-Seok;Choi, Hyun-Sok;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.1-11
    • /
    • 2006
  • This paper presents a seismic fragility analysis method for a cable-stayed bridge with energy dissipation devices. Model uncertainties represented by random variables include input ground motions, characteristics of energy dissipation devices and the stiffness of cable-stayed bridge. Using linear regression, we established demand models for the fragility analysis from the relationship between maximum responses and the intensity of input ground motions. For capacity models, we considered the moment and shear force of the main tower, longitudinal displacement of the girder, deviation of the stay cables tension and the local buckling of the main steel tower as the limit states for cable-stayed bridge. As a numerical example, fragility analysis results for the 2nd Jindo bridge are presented. The effect of energy dissipation devices is also briefly discussed.

A Study on the Strength Evaluation of Rectangular Steel Tubular Columns Infilled with High Strength Concrete (고강도콘크리트 충전 각형강관기둥의 내력평가에 관한 연구)

  • Shim, Jong Seok;Han, Duck Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2011
  • The CFT columns used in thin-walled steel tubes can be more economical, because it was expected the increase of strength by restriction for the local buckling of steel tubes. The purpose of this paper is to review feasibility of existing design formula and verify the applicability limit of width-to-thickness ratio for increasing the strength of rectangular CFT columns. As the main parameters of experiments, width-to-thickness ratios of steel tube, height of rectangular concrete columns, and concrete filled or not. The strength of concrete are selected to 90MPa. From the test results, the confinement effect of steel tube on the compressive strength of infilled concrete is remarkably appeared in the thin-walled rectangular steel tube columns infilled wih high strength concrete. By the non-linear analysis, the axial strength from experiment result was given higher than analysis result for all CFT stub columns.

A new method for infill equivalent strut width

  • Tabeshpour, Mohammad Reza;Arasteh, Arash Mahdipour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.257-268
    • /
    • 2019
  • Infills are as important members in structural design as beams, columns and braces. They have significant effect on structural behavior. Because of lots of variables in infills like material non-linear behavior, the interaction between frames and infill, etc., the infills performance during an earthquake is complicated, so have led designers do not consider the effect of infills in designing the structure. However, the experimental studies revealed that the infills have the remarkable effect on structure behavior. As if these effects ignored, it might occur soft-story phenomena, torsion or short-column effects on the structures. One simple and appropriate method for considering the infills effects in analyzing, is replacing the infills with diagonal compression strut with the same performance of real infill, instead of designing the whole infill. Because of too many uncertainties, codes and researchers gave many expressions that were not as the same as the others. The major intent of this paper is calculation the width of this diagonal strut, which has the most characteristics of infill. This paper by comprehensive on different parameters like the modulus of young or moment of inertia of columns presents a new formula for achieving the equivalent strut width. In fact, this new formula is extracted from about 60 FEM analyses models. It can be said that this formula is very efficient and accurate in estimating the equivalent strut width, considering the large number of effective parameters relative to similar relationships provided by other researchers. In most cases, the results are so close to the values obtained by the FEM. In this formula, the effect of out of plane buckling is neglected and this formula is used just in steel structures. Also, the thickness of infill panel, and the lateral force applied to frame are constant. In addition, this new formula is just for modeling the lateral stiffness. Obtaining the nearest response in analyzing is important to the designers, so this new formula can help them to reach more accurate response among a lot of experimental equations proposed by researchers.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Cumulative damage in RC frame buildings - The 2017 Mexico earthquake case

  • Leonardo M. Massone;Diego Aceituno;Julian Carrillo
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.13-36
    • /
    • 2023
  • The Puebla-Morelos Earthquake (Mw 7.1) occurred in Mexico in 2017 causing 44 buildings to collapse in Mexico City. This work evaluates the non-linear response of a 6-story reinforced concrete (RC) frame prototype model with masonry infill walls on upper floors. The prototype model was designed using provisions prescribed before 1985 and was subjected to seismic excitations recorded during the earthquakes of 1985 and 2017 in different places in Mexico City. The building response was assessed through a damage index (DI) that considers low-cycle fatigue of the steel reinforcement in columns of the first floor, where the steel was modeled including buckling as was observed in cases after the 2017 earthquake. Isocurves were generated with 72 seismic records in Mexico City representing the level of iso-demand on the structure. These isocurves were compared with the location of 16 collapsed (first-floor column failure) building cases consistent with the prototype model. The isocurves for a value greater than 1 demarcate the location where fatigue failure was expected, which is consistent with the location of 2 of the 16 cases studied. However, a slight increase in axial load (5%) or decrease in column cross-section (5%) had a significant detrimental effect on the cumulated damage, increasing the intensity of the isocurves and achieving congruence with 9 of the 16 cases, and having the other 7 cases less than 2 km away. Including column special detailing (tight stirrup spacing and confined concrete) was the variable with the greatest impact to control the cumulated damage, which was consistent with the absence of severe damage in buildings built in the 70s and 80s.

Study of Failure Mode and Static Behavior of Lightweight FRP Truss Bridge Deck System (복합재료 트러스 교량시스템의 정적거동 및 파괴모드에 관한 해석적 연구)

  • Jung, Woo-Young;Lee, Hyung-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.511-520
    • /
    • 2007
  • There is a concern with worldwide deterioration of highway bridges, particularly reinforced concrete. The advantages of fibre reinforced plastic(FRP) composites over conventional materials motivate their use in highway bridges for replacement of structures. Recently, an FRP deck has been installed on a state highway, located in New York State, as an experimental project. In this paper, a systematic approach for analysis of this FRP deck bridge is presented. Multi-step linear numerical analyses have been performed using the finite element method to study the structural behavior and the possible failure mechanism of the FRP deck-superstructure system. Deck's self-weight and ply orientations at the interface between steel girders and FRP deck are considered in this study. From this research, the results of the numerical analyses were corroborated with field test results. Analytical results reveal several potential failure mechanism for the FRP deck and truss bridge system. The results presented in this study may be used to propose engineering design guideline for new and replacement FRP bridge deck structure.

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics (기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • In this study, the explicit numerical algorithm was proposed to simulate the stress erection process and ultimate-load analysis of the strarch (stressed arch) system. The strarch system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames erected through a post-tensioning stress erection procedure. The flexible bottom chord, which has sleeve and gap details, is closed by the reaction force of the prestressing tendon. The prestress imposed on the tendon will enable the strarch system to be erected. This post-tensioning process is called "stress erection process." During this process, plastic rigid-body rotation occurs to the flexible top chord due to the excessive amount of plastic strain, and the structural characteristic is unstable. In this study, the dynamic relaxation method (DRM) was adopted to calculate the nonlinear equilibrium equation of the system, and a displacement-based finite-element-formulated filament beam element was used to simulate the nonlinear behavior of the top chord sections of the strarch system. The section of the filament beam element was composed by the amount of filaments, which can be modeled by various material models. The Ramberg-Osgood and bilinear kinematic elastic plastic material models were formulated for the nonlinear material behaviors of the filaments. The numerical results that were obtained in the present study were compared with the experiment results of the stress erection and with the results of the ultimate-load analysis of the strarch unit frame. The results of the present studies are in good agreement with the previous experiment results, and the explicit DRM enabled the analysis of the post-buckling behaviors of the strarch unit frame.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF