• Title/Summary/Keyword: Linear Attenuation Coefficient

Search Result 91, Processing Time 0.029 seconds

Fundamental Properties and Radioactivity Shielding Characteristics of Mortar Specimen Utilizing CRT Waste Glass as Fine Aggregate (폐 브라운관(CRT) 유리를 잔골재로 대체한 모르타르 시험체의 기초 물성 및 방사선 차폐 특성)

  • Choi, Yoon-Suk;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.163-170
    • /
    • 2019
  • In recent years, various types of industrial wastes are rapidly increasing with the development of high-tech industries. Specially, high-density waste glass of CRT TV containing heavy metals are buried or disposed of due to reprocessing costs and environmental pollution problems. Thus, more basic research is needed to recycle waste such as CRT waste glass such. In this study, the fundamental properties and radiation shielding performance of mortar specimens substituted CRT waste glass as a fine aggregate were analyzed and their application to shielding materials was evaluated. According to the results, the bulk density of mortar specimen replaced with CRT waste glass was increased and the compressive strength and flexural strength were decreased. Meanwhile, the CRT waste glass substitute specimen containing a large amount of lead component showed a higher shielding performance than the general mortar specimen. Especially, the linear attenuation coefficient of CRT waste glass in $122KeV{\cdot}^{57}Co$ of the low energy field was 2.5 times higher than that of normal specimen.

Quantitative Ultrasound Radiofrequency Data Analysis for the Assessment of Hepatic Steatosis in Nonalcoholic Fatty Liver Disease Using Magnetic Resonance Imaging Proton Density Fat Fraction as the Reference Standard

  • Sun Kyung Jeon;Jeong Min Lee;Ijin Joo;Sae-Jin Park
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1077-1086
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of quantitative ultrasound (US) parameters for the assessment of hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD) using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as the reference standard. Materials and Methods: In this single-center prospective study, 120 patients with clinically suspected NAFLD were enrolled between March 2019 and January 2020. The participants underwent US examination for radiofrequency (RF) data acquisition and chemical shift-encoded liver MRI for PDFF measurement. Using the RF data analysis, the attenuation coefficient (AC) based on tissue attenuation imaging (TAI) (AC-TAI) and scatter-distribution coefficient (SC) based on tissue scatter-distribution imaging (TSI) (SC-TSI) were measured. The correlations between the quantitative US parameters (AC and SC) and MRI-PDFF were evaluated using Pearson correlation coefficients. The diagnostic performance of AC-TAI and SC-TSI for detecting hepatic fat contents of ≥ 5% (MRI-PDFF ≥ 5%) and ≥ 10% (MRI-PDFF ≥ 10%) were assessed using receiver operating characteristic (ROC) analysis. The significant clinical or imaging factors associated with AC and SC were analyzed using linear regression analysis. Results: The participants were classified based on MRI-PDFF: < 5% (n = 38), 5-10% (n = 23), and ≥ 10% (n = 59). AC-TAI and SC-TSI were significantly correlated with MRI-PDFF (r = 0.659 and 0.727, p < 0.001 for both). For detecting hepatic fat contents of ≥ 5% and ≥ 10%, the areas under the ROC curves of AC-TAI were 0.861 (95% confidence interval [CI]: 0.786-0.918) and 0.835 (95% CI: 0.757-0.897), and those of SC-TSI were 0.964 (95% CI: 0.913-0.989) and 0.935 (95% CI: 0.875-0.972), respectively. Multivariable linear regression analysis showed that MRI-PDFF was an independent determinant of AC-TAI and SC-TSI. Conclusion: AC-TAI and SC-TSI derived from quantitative US RF data analysis yielded a good correlation with MRI-PDFF and provided good performance for detecting hepatic steatosis and assessing its severity in NAFLD.

Role of modifiers on the structural, mechanical, optical and radiation protection attributes of Eu3+ incorporated multi constituent glasses

  • Poojha, M.K. Komal;Marimuthu, K.;Teresa, P. Evangelin;Almousa, Nouf;Sayyed, M.I.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3841-3848
    • /
    • 2022
  • The effect of modifiers on the optical features and radiation defying ability of the Eu3+ ions doped multi constituent glasses was examined. XRD has established the amorphous nature of the specimen. The presence of various functional/fundamental groups in the present glasses was analyzed through FTIR spectra. The physical, structural and elastic traits of the glasses were explored. The variation in the structural compactness of the glass structure according to the incorporated modifier was enlightened to describe their suitability for a better shielding media. For the examined glasses, the metallization criterion value varied in the range 0.613-0.692, indicating the non-metallic character of the glasses with possible nonlinear optical applications. The computed elastic moduli expose the Li-containing glass (BTLi:Eu) to be tightly packed and rigid, which is a requirement for a better shielding channel. Furthermore, the optical bandgap and the Urbach energy values are calculated based on the optical absorption spectra. The evaluated bonding parameters revealed the nature of the fabricated glasses covalent. In addition, we investigated the radiation attenuation attributes of the prepared Eu3+ ions doped multi constituent glasses using Phy-X software. We determined the linear attenuation coefficient (LAC) and reported the influence of the five oxides Li2O3, CaO, BaO, SrO, and ZnO on the LAC values. The LAC varied between 0.433 and 0.549 cm-1 at 0.284 MeV. The 39B2O3-25TeO2-15Li2O3-10Na2O-10K2O-1Eu2O3 glass has a much smaller LAC than the other glasses.

Effect of black sand as a partial replacement for fine aggregate on properties as a novel radiation shielding of high-performance heavyweight concrete

  • Ashraf M. Heniegal;Mohamed Amin;S.H. Nagib;Hassan Youssef;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.499-516
    • /
    • 2023
  • To defend against harmful gamma radiation, new types of materials for use in the construction of heavyweight concrete (HWC) are still needed to be developed. This research introduces new materials to be employed as a partial replacement for fine aggregate (FA) to manufacture high-performance heavyweight concrete (HPHWC). These materials include hematite, black sand, ilmenite, and magnetite, with substitution ratios of 50% and 100% of FA. In this research, the hardening and fresh characteristics of HPHWC were obtained. Concrete samples' Gamma-ray linear attenuation coefficient was evaluated utilizing a gamma source of Co-60 through the thicknesses of 2.5, 5, 7.5, 10, 12.5, and 15 cm. High temperatures were studied for HPHWC samples, which were exposed to up to 700℃ for two hours. Energy-dispersive x-rays and a scanning electron microscope carried out microstructure analyses. Magnetite as an FA attained the lowest compressive strength of 87.1 MPa, but the best radiation protection characteristics and the highest density of 3100 kg/m3 were achieved. After 28 days, the attenuation efficiency of concrete mixtures was increased by 6.5% when fine sand was replaced with black sand at a ratio of 50%. HPHWC, which contains hematite, black sand, ilmenite, and magnetite, is designed to reduce environmental and health dangers and be used in medicinal, military, and civil applications.

Correlation between the concentration of TeO2 and the radiation shielding properties in the TeO2-MoO3-V2O5 glass system

  • Y. Al-Hadeethi ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1218-1224
    • /
    • 2023
  • We investigated the radiation shielding competence for TeO2-V2O5-MoO3 glasses. The Phy-X software was used to report the radiation shielding parameters for the present glasses. With an increase in TeO2 and MoO3 content, the samples' linear attenuation coefficient improves. However, at low energies, this change is more apparent. At low energy, the present samples have an effective atomic number (Zeff) that is relatively high (in order of 16.17-24.48 at 0.347 MeV). In addition, the findings demonstrated that the density of the samples is a very critical factor in determining the half value layer (HVL). The minimal HVL for each sample can be found at 0.347 MeV and corresponds to 1.776, 1.519, 1.391, 1.210 and 1.167 cm for Te1 to Te5 respectively. However, the highest HVL of these glasses is recorded at 1.33 MeV, which corresponds to 3.773, 3.365, 3.218, 2.925 and 2.908 cm respectively. The tenth value layer results indicate that the thickness of the specimens needs to be increased in order to shield the photons that have a greater energy. Also, the TVL results demonstrated that the sample with the greatest TeO2 and MoO3 concentration has a higher capacity to attenuate photons.

Characterization of glasses composed of PbO, ZnO, MgO, and B2O3 in terms of their structural, optical, and gamma ray shielding properties

  • Aljawhara H. Almuqrin;M.I. Sayyed;Ashok Kumar;U. Rilwan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2842-2849
    • /
    • 2024
  • The amorphous glasses containing PbO, ZnO, MgO, and B2O3 have been fabricated using the melt quenching technique. The structural properties have been analysed using the Fourier-transform infrared (FTIR) and Raman spectroscopy. Derivative of Absorption Spectra Fitting (DASF) method have been used to estimate the band gap energy from the UV-Vis absorption data which decreases from 3.02 eV to 2.66 eV with increasing the concentration of the PbO.The four glass samples 0.284 and 0.826 MeV showed unique variations in terms of gamma attenuation ability. LZMB4 glass sample proved to be the mist effective in terms of shielding of gamma radiation as it requires little distance compared to LZMB3, LZMB2 and LZMB1 to attenuate. RPE revealed a raise with increase in the thickness of the material and reduces as the energy raises. TF is superior in LZMB1 compared to LZMB2, LZMB3 and LZMB4, confirming that, LZMB4 will attenuate better. The ZEff of the materials was seen falling as the energy increases, confirming that the linear attenuation coefficient of the glass materials decreases when the energy is increased. The results confirmed that, glass material LZMB4 is the best option especially for gamma radiation shielding applications compared to LZMB3, followed by LZMB2, then LZMB1.

Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding

  • Ouda, Ahmed S.
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.61-75
    • /
    • 2014
  • This study aimed to investigate the suitability of some concrete components for producing "high-performance heavy density concrete" using different types of aggregates that could enhances the shielding efficiency against ${\gamma}$-rays. 15 mixes were prepared using barite, magnetite, goethite and serpentine aggregates along with 10% silica fume, 20% fly ash and 30% blast furnace slag to total OPC content for each mix. The mixes were subjected to compressive strength at 7, 28 and 90 days. In some mixes, compressive strengths were also tested up to 90 days upon replacing sand with the fine portions of magnetite, barite and goethite. The mixes containing magnetite along with 10% SF reaches the highest compressive strength exceeding over M60 requirement by 14% after 28 days. Whereas, the compressive strength of concrete containing barite was very close to M60 and exceeds upon continuing for 90 days. Also, the compressive strength of high-performance concrete incorporating magnetite fine aggregate was significantly higher than that containing sand by 23%. On the other hand, concrete made with magnetite fine aggregate had higher physico-mechanical properties than that containing barite and goethite. High-performance concrete incorporating magnetite fine aggregate enhances the shielding efficiency against ${\gamma}$-rays.

Analysis of the O-ring Deformation Behavior by the Computed Tomography (전산화 단층촬영에 의한 오링 변형 거동 분석)

  • Kim, Dong-Ryun;Park, Sung-Han;Lee, Hwan-Gyu;Koo, Hyung-Hoi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.25-29
    • /
    • 2006
  • The object of this study is to develop new examination techniques for measuring the O-ring deformation behavior under the pressure condition. The extrusion lengths measured from the computed tomography were in good agreement with the results that measured from non-contact laser displacement sensor. The deformed shapes of O-ring measured by the computed tomography and evaluated by the FEM agreed well with the extrusion length and the expanded diameter. But the contact widths of the O-ring and steel measured by the computed tomography were a little larger than the results of the FEM.

  • PDF

Density Profile Evaluation of Needle-punched Carbon/Carbon Composites Nozzle Throat by the Computed Tomography (전산화 단층촬영에 의한 니들펀칭 탄소/탄소 복합재료 노즐 목삽입재의 밀도 분포 평가)

  • Kim Dong-Ryun;Yun Nam-Gyun;Lee Jin-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • In this study, the non-destructive computed tomography was adopted to observe the density profile of the needle-punched Carbon/Carbon(C/C) composites nozzle throat. The density profile of C/C was evaluated within ${\pm}0.01g/cm^3$ with 98.74% confidence when the correction of the image and high signal-to-noise ratio were achieved by the optimization of the beam hardening, the electrical noise and the scattered X-ray. The density variation of C/C with the computed tomography was in good agreement with the results obtained by the water immersion method and the observation with scanning electron microscope.

Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals

  • Islam G. Alhindawy;Hany Gamal;Aljawhara.H. Almuqrin;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1885-1891
    • /
    • 2023
  • The present work aims to fabricate Na1+xZr2SixP3-xO12 compound at various calcination temperatures based on the zircon mineral. The fabricated compound was calcinated at 250, 500, and 1000℃. The effect of calcination temperature on the structure, crystal phase, and radiation shielding properties was studied for the fabricated compound. The X-ray diffraction diffractometer demonstrates that, the monoclinic crystal phase appeared at a calcination temperature of 250℃ and 500℃ is totally transformed to a high-symmetry hexagonal crystal phase under a calcination temperature of 1000℃. The radiation shielding capacity was also qualified for the fabricated compounds using the Monte Carlo N-Particle transport code in the g-photons energy interval between 15keV and 122keV. The impacts of calcination temperature on the g-ray shielding behavior were clarified in the present study, where the linear attenuation coefficient was enhanced by 218% at energy of 122keV, when the calcination temperature increased from 250 to 1000℃, respectively.