• Title/Summary/Keyword: Linear Array

Search Result 731, Processing Time 0.027 seconds

A Performance Improvement of Ultrasonic Diagnosis Transducer by Transient Acoustic Field Analysis (과도음장 해석을 통한 초음파 진단 탐촉자의 성능 개선)

  • 박은주;송행용;김무준;김동현;이수성;하강열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.744-756
    • /
    • 2002
  • The transient acoustic fields formed by a 3.5 ㎒ curved linear array transducer which is commonly used in ultrasonic medical imaging system for diagnosis of abdomen are systematically analyzed to obtain new design parameters for the better acoustic image. In the analysis with an assumption of radiating waveform, element size, radius of curvature, amplitude apodization are considered as parameters giving constitutive relations with the fields. As simulation results, appropriate new parameters with the reduced curvature and elevation aperture and the apodization of Hamming window, which make an improved acoustic beam with lower side lobe levels than a conventional typical transducer, are obtained.

A Single-Stage 37 dB-Linear Digitally-Controlled Variable Gain Amplifier for Ultrasound Medical Imaging

  • Cho, Seong-Eun;Um, Ji-Yong;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.579-587
    • /
    • 2014
  • This paper presents a variable gain amplifier (VGA) for an analog front-end (AFE) of ultrasound medical imaging. This VGA has a closed-loop topology and shows a 37-dB-linear characteristic with a single-stage amplifier. It consists of an op-amp, a non-binary-weighted capacitor array, and a gain-control block. This non-binary-weighted capacitor array reduces the required number of capacitors and the complexity of the gain-control block. The VGA has been fabricated in a 0.35-mm CMOS process. This work gives the largest gain range of 37 dB per stage, the largest P1 dB of 9.5 dBm at the 3.3-V among the recent VGA circuits available in the literature. The voltage gain is controlled in the range of [-10, 27] dB in a linear-in-dB scale with 16 steps by a 4-bit digital code. The VGA has a bandpass characteristic with a passband of [20 kHz, 8 MHz].

Optimal Directivity Synthesis of Linear array Sources (선형배열음원의 최적 지향성합성)

  • Jeong, Eui-Cheol;Kim, Sang-Yun;Kim, On;Cho, Ki-Ryang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.250-259
    • /
    • 2012
  • This paper compared and investigated the choice of optimal algorithm affects on the directivity synthesis of linear array in the satisfaction to the design specification of the desired directivity, convergence characteristic, and adaptability. Optimal algorithms use a quasi-Newton method(DFP and BFGS method) for realizing the desired directivity, used a quasi-ideal beam, steering beam, and a multi-beam, chosen as desired directivity. In the numerical result, this paper verified the effectiveness of the quasi-Newton method to the directivity synthesis, and offered a solving approach of occurred problems in the numerical simulation process.

Implementation of the omnidirectional target bearing detector utilizing towed linear arrays (예인선배열 센서를 이용한 전방위 표적방위 탐지기 구현)

  • 이성은;천승용;황수복;이형욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise(S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. Detection of modern underwater targets is becoming increasingly difficult as noise reduction technology leads to considerably low-level acoustic emissions. Therefore, the improvement of beamforming is very important to detect modern underwater targets at the long range in the complex environmental sea. Also, to react to the fast attack mobiles such as torpedoes, port and starboard discrimination is required to be performed very quickly. In this paper, we proposed the implementation of omnidirectional target bearing detector without port and starboard ambiguity to detect effectively the low-level underwater targets. The port and starboard discrimination is performed by cardioid processing and the improvement of beamforming utilizes the cross correlation matrix of individual hydrophone pairs of linear array sensors. The sea test result shows that the system implemented is good for the detection of the low-level underwater targets.

Blind Waveform Estimation Scheme Based on ESPRIT for Nonuniform Linear Array MIMO Radars Using Distributed Multiple Electronic Sensors (분산 다중 전자전 센서를 이용한 ESPRIT 기반 비등간격 선형배열 MIMO 레이다의 암맹 직교신호 분리 기법)

  • Yeo, Kwanggoo;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.891-897
    • /
    • 2018
  • In this paper, we propose a blind estimation scheme for the antenna spacing of nonuniform linear array MIMO radar using distributed electronic sensors based on ESPRIT. We present a blind method to separate orthogonal waveforms of a MIMO radar based on the antenna spacing estimation. The estimated orthogonal waveforms of a MIMO radar can be used for disabling opponent MIMO radars.

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

Development of Real-Time Thickness Measuring System for Insulated Pipeline Using Gamma-ray (감마선을 이용한 단열배관의 실시간 두께측정시스템 개발)

  • Jang, Ji-Hoon;Kim, Byung-Joo;Kim, Gi-Dong;Cho, Kyung-Shik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.500-507
    • /
    • 2002
  • By this study, on-line real-time radiometric system was developed using a 64 channels linear array of solid state detectors to measure wall thickness of insulated piping system. This system uses an Ir-192 as a gamma ray source and detector is composed of BGO scintillator and photodiode. Ir-192 gamma ray source and linear detector array mounted on a computer controlled robotic crawler. The Ir-192 gamma ray source is located on one side of the piping components and the detector array on the other side. The individual detectors of the detector array measure the intensity of the gamma rays after passing through the walls and the insulation of the piping component under measurement. The output of the detector array is amplified by amplifier and transmitted to the computer through cable. This system collects and analyses the data from the detector array in real-time as the crawler travels over the piping system. The maximum measurable length of pipe is 120cm/min. in the case of 1mm scanning interval.

A Study on the Control of Asymmetric Sidelobe Levels and Multiple Nulling in Linear Phased Array Antennas (선형 위상 배열 안테나의 비대칭 Sidelobe 레벨 제어 및 다중 Nulling에 관한 연구)

  • Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper newly proposes a methodology towards computing antenna element weights which are satisfying asymmetric sidelobe levels(SLLs) specified arbitrarily on both sides of the main beam pattern, in the linear phased array antenna pattern synthesis problem. Opposite to the conventional methods in which the element weights are directly optimized from the array factor, this method is based on the optimum perturbations of complex roots inherent to the Schelkunoff's polynomial form which is described for the array factor. From the proposed methodology, the capability of nulling the directions of multiple jammers is also possible by independently perturbing only the complex roots corresponding to each jamming direction, hence allowing an enhancement of the simplicity of the numerical procedure by means of a proper reduction of the dimension of the solution space. The complex weights over the array are then easily computed by substituting the optimally perturbed complex roots to the Schelkunoff's polynomial. Some examples are examined and numerically verified by substituting the extracted weights into the array factor equation.

Systolic Arrays for Lattice-Reduction-Aided MIMO Detection

  • Wang, Ni-Chun;Biglieri, Ezio;Yao, Kung
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.481-493
    • /
    • 2011
  • Multiple-input multiple-output (MIMO) technology provides high data rate and enhanced quality of service for wireless communications. Since the benefits from MIMO result in a heavy computational load in detectors, the design of low-complexity suboptimum receivers is currently an active area of research. Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-complexity method with near-maximum-likelihood performance. In this paper, we advocate the use of systolic array architectures for MIMO receivers, and in particular we exhibit one of them based on LRAD. The "Lenstra-Lenstra-Lov$\acute{a}$sz (LLL) lattice reduction algorithm" and the ensuing linear detections or successive spatial-interference cancellations can be located in the same array, which is considerably hardware-efficient. Since the conventional form of the LLL algorithm is not immediately suitable for parallel processing, two modified LLL algorithms are considered here for the systolic array. LLL algorithm with full-size reduction-LLL is one of the versions more suitable for parallel processing. Another variant is the all-swap lattice-reduction (ASLR) algorithm for complex-valued lattices, which processes all lattice basis vectors simultaneously within one iteration. Our novel systolic array can operate both algorithms with different external logic controls. In order to simplify the systolic array design, we replace the Lov$\acute{a}$sz condition in the definition of LLL-reduced lattice with the looser Siegel condition. Simulation results show that for LR-aided linear detections, the bit-error-rate performance is still maintained with this relaxation. Comparisons between the two algorithms in terms of bit-error-rate performance, and average field-programmable gate array processing time in the systolic array are made, which shows that ASLR is a better choice for a systolic architecture, especially for systems with a large number of antennas.