• 제목/요약/키워드: Linear Actuators

검색결과 247건 처리시간 0.026초

의료용 도뇨관 표면의 도선용 구리 박막 증착을 위한 스퍼터링-열증착 연속공정장비의 설계 및 개발 (Design and Development of Sputter-evaporation System for Micro-wiring on Medical Catheter)

  • 장준근;정석
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.62-71
    • /
    • 1999
  • Integrating micro-machined sensors and actuators on the conventional devices with the copper power lines was incompatible to fabricate the mass produced micro electromechanical system (MEMS) devices. To achieve the compatibility of the wiring method between MEMS parts and devices, we developed the three-dimensional sputter-evaporation system that coats micropatterned thin copper films on the surface of the MEMS element. The system consists of a process chamber, two branch chambers, the substrate holder, and a linear-rotary motion feedthrough. Thin copper film was sputtered and evaporated on the biocompatible polymer, Pellethane$^{circed{R}}$ and silicone, catheter that is 2 mm in diameter and 700 mm in length. The metal film coating technique with three-dimensional thin film sputter-evaporation system was developed to apply the power and signal lines on the micro active endoscope. In this paper, we developed the three-dimensional metal film sputter-evaporation system operated on the low temperature for the biopolymeric substrates used in the medical MEMS devices.

  • PDF

초정밀 자기부상 스테이지용 능동진동제어시스템 설계 (A Design Of Active Vibration Control System For Precise Maglev Stage)

  • 이주훈;김용주;손성완;이홍기;이세한;최영규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force fer suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system. the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used fer solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage table's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

Interstory-interbuilding actuation schemes for seismic protection of adjacent identical buildings

  • Palacios-Quinonero, Francisco;Rubio-Massegu, Josep;Rossell, Josep M.;Rodellar, Jose
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.67-81
    • /
    • 2019
  • Rows of closely adjacent buildings with similar dynamic characteristics are common building arrangements in residential areas. In this paper, we present a vibration control strategy for the seismic protection of this kind of multibuilding systems. The proposed approach uses an advanced Linear Matrix Inequality (LMI) computational procedure to carry out the integrated design of distributed multiactuation schemes that combine interbuilding linking devices with interstory actuators implemented at different levels of the buildings. The controller designs are formulated as static output-feedback H-infinity control problems that include the interstory drifts, interbuilding approachings and control efforts as controlled-output variables. The advantages of the LMI computational procedure are also exploited to design a fully-decentralized velocity-feedback controller, which can define a passive control system with high-performance characteristics. The main ideas are presented by means of a system of three adjacent five-story identical buildings, and a proper set of numerical simulations are conducted to demonstrate the behavior of the different control configurations. The obtained results indicate that interstory-interbuilding multiactuation schemes can be used to design effective vibration control systems for adjacent buildings with similar dynamic characteristics. Specifically, this kind of control systems is able to mitigate the vibrational response of the individual buildings while maintaining reduced levels of pounding risk.

Stability/instability of the graphene reinforced nano-sized shell employing modified couple stress model

  • Yao, Zhigang;Xie, Hui;Wang, Yulei
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.31-46
    • /
    • 2021
  • The current research deals with, stability/instability and cylindrical composite nano-scaled shell's resonance frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The piece-wise GPL-reinforced composites' material properties change through the orientation of cylindrical nano-sized shell's thickness as the temperature changes. Moreover, in order to model all layers' efficient material properties, nanomechanical model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate GPLRC nano-sized shell's size dependency. It is firstly investigated that reaching the relative frequency's percentage to 30% would lead to thermal buckling. The current study's originality is in considering the multifarious influences of GPLRC and thermal loading along with FMCS on GPLRC nano-scaled shell's resonance frequencies, relative frequency, dynamic deflection, and thermal buckling. Furthermore, Hamilton's principle is applied to achieve boundary conditions (BCs) and governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in GPLRC cylindrical nano-scaled shell's relative frequency change, resonance frequency, stability/instability, and dynamic deflection. The current study's outcomes are practical assumptions for materials science designing, nano-mechanical, and micromechanical systems such as micro-sized sensors and actuators.

A class of actuated deployable and reconfigurable multilink structures

  • Phocas, Marios C.;Georgiou, Niki;Christoforou, Eftychios G.
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.189-210
    • /
    • 2022
  • Deployable structures have the ability to shift from a compact state to an expanded functional configuration. By extension, reconfigurability is another function that relies on embedded computation and actuators. Linkage-based mechanisms constitute promising systems in the development of deployable and reconfigurable structures with high flexibility and controllability. The present paper investigates the deployment and reconfigurability of modular linkage structures with a pin and a sliding support, the latter connected to a linear motion actuator. An appropriate control sequence consists of stepwise reconfigurations that involve the selective releasing of one intermediate joint in each closed-loop linkage, effectively reducing it to a 1-DOF "effective crank-slider" mechanism. This approach enables low self-weight and reduced energy consumption. A kinematics and finite-element analysis of different linkage systems, in all intermediate reconfiguration steps of a sequence, have been conducted for different lengths and geometrical characteristics of the members, as well as different actuation methods, i.e., direct and cable-driven actuation. The study provides insight into the impact of various structural typological and geometrical factors on the systems' behavior.

자주식 시금치 수확장치에 적용된 유압시스템의 잉여유량 분석 (Analysis of Surplus Flow in a Hydraulic System Applied to a Self-propelled Spinach Harvester)

  • 노대경;이동원;이종수;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.26-33
    • /
    • 2022
  • This study dealt with a self-propelled spinach harvester, which is capable of carrying out sequential harvesting work. This study aimed to find the cause of the harvester's occasional performance deterioration, which occurs in the process of simplifying the hydraulic circuit, using a multi-domain analysis model. The study was carried out in the following manner. First, a hydraulic system analysis model, which combines linear motion, rotary motion, hydrodynamic behavior, and an electrical signal, was developed through SimulationX software, specialized in multi-domain analysis. Second, a scenario for single behavior and coupled behavior was set out on an actuator basis. Third, the flow rate of the hydraulic system, which is not required for the movement of the actuator, was quantitatively analyzed. The results showed that a change in oil temperature was the cause of the harvester's occasional performance deterioration. And the higher the oil temperature, the more serious the performance deterioration, especially as the number of actuators operated simultaneously was small.

션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어 (Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits)

  • 문성환;김승조
    • Composites Research
    • /
    • 제13권5호
    • /
    • pp.50-59
    • /
    • 2000
  • 본 논문에서는 복합재료 패널 플러터를 억제할 수 있는 두 가지 방법에 대해서 연구하였다. 첫번째, 능동제어 방법에서는 선형 제어 이론을 바탕으로 제어기를 설계하였으며 제어입력이 작동기에 가해진다. 여기서 작동기로는 PZT를 사용하였다. 두 번째, 인덕터와 저항으로 구성되어진 션트회로를 사용하여 시스템의 감쇠를 증가시킴으로써 패널 플러터를 억제할 수 있는 새로운 방법인 수동감쇠기법에 대한 연구가 수행되었다. 이 수동감쇠기법은 능동적 제어보다 강건(robust)하며 커다란 전원 공급이 필요하지 않고 제어기나 감지 시스템과 같이 복잡한 주변 기기가 필요 없이도 실제 패널 플러터 억제에 쉽게 응용할 수 있는 장점을 가지고 있다. 최대의 작동력/감쇠 효과를 얻기 위해서 유전자 알고리듬을 사용하여 압전 세라믹의 형상과 위치를 결정하였다. 해밀턴 원리를 사용해서 지배 방정식을 유도하였으며, 기하학적 대변형을 고려하기 위해 von-Karman의 비선형 변형률-변위 관계식을 사용하였으며 공기력 이론으로는 준 정상 피스톤 1차 이론을 사용하였다. 4절점 4각형 평판 요소를 이용하여 이산화된 유한 요소 방정식을 유도하였다. 효율적인 플러터 억제를 위해 패널 플러터에 중요한 영향을 미치는 플러터 모드를 이용한 모드축약기법을 사용하였으며, 이를 통해 비선형 연계 모달 방정식이 얻어지게 된다. 능동적 제어 방법과 수동 감쇠 기법에 의해 수행되어진 플러터 억제 결과들을 Newmark 비선형 시분할 적분법을 통해 시간 영역에서 살펴 보았다.

  • PDF

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

제동 액츄에이터 손상을 고려한 2차 충돌 예방에 관한 연구 (A Study on Prevention of Secondary Collision considering Failure of Brake Actuator)

  • 양희철;김두용;강태완;소민우;권재준;박기홍
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.553-563
    • /
    • 2015
  • Reportedly the fatality rate from secondary collision is six times higher than the average fatality rate from all traffic accidents. So prevention of the secondary collision is attracting significant attention from automotive industries. However, the secondary collision prevention systems that have been developed are not considering possibility of brake actuator failure that can occur by the impact during the initial collision. In this paper, a new system has been developed that could prevent secondary collision even in case of brake actuator failure by taking advantage of still operating actuators. In this system, a steering control is performed for maintaining a lane by using linear quadratic regulator. Additionally, the system attempts differential brake control with the remaining braking capability to stop the vehicle in the shortest distance. Through simulation in various collision scenarios, the system has demonstrated significant potential of preventing secondary collision that could otherwise have resulted in severe fatality.

예측제어기를 이용한 시간지연 보상 (Compensation of Time Delay Using Predictive Controller)

  • 허화라;박재한;이장명
    • 전자공학회논문지S
    • /
    • 제36S권2호
    • /
    • pp.46-56
    • /
    • 1999
  • 제어기와 플랜트가 공간상으로 분리되어 폐루프 내부에 시간지연이 불가피하게 존재하는 제어시스템의 시간지연 문제를 보상하기 위하여 확률 모델에 기반하여 설계된 예측제어기를 제안한다. 예측제어기는 지연된 이전의 값들로부터 선형예측 기법과 확률함수를 이용하여 실제의 현재값을 추정하며, 이를 제어기에 적용하여 시간지연에 의하여 발생되는 문제점을 최소화하였다. 제안된 방법의 타당성을 검증하기 위하여 DC 서보모터 시스템에 본 알고리즘을 실현하였으며, 상이한 시간지연에 따른 제어시스템의 영향을 관측하였다. 실험결과에서 예측제어기는 시간지연에 대하여 PID 제어기보다 우수한 수렴특성을 나타내었으며, 제어기의 안정범위 내에서 허용할 수 있는 최대 시간지연 값도 증가시킬 수 있음을 보였다. 제안된 예측제어기는 플랜트의 모델링을 요구하지 않고 출력의 통계적 정보만을 사용하므로 모델링이 어려운 시스템의 제어나 PID 제어의 보상기로 활용할 수 있는 범용적인 기법이다.

  • PDF