• 제목/요약/키워드: Line segments matching

검색결과 29건 처리시간 0.032초

직선 기반 스테레오 정합을 이용한 평면 지붕 인공지물의 고도 정보 추출 (Height Estimation of the Flat-Rooftop Structures using Line-Based Stereo Matching)

  • 최성한;엄기문;이쾌희
    • 대한원격탐사학회지
    • /
    • 제11권3호
    • /
    • pp.61-70
    • /
    • 1995
  • 본 논문에서는 카메라의 정확한 정보(카메라 자세, 위치, 초점거리, 시야각)를 알고 있다 는 가정하에 스테레오 항공영사에서 평면지붕 인공지물의 고도정보를 추출하기 위한 알고리즘이 제안하였다. 이 알고리즘은 위성영사에 대해서도 적용이 가능하다. 특징기반 정합을 수행하는데 있어, 일반적인 건물을 묘사하기 위해 적합한 직선을 특징으로 선택하였다. 이 논문은 세단계로 구성되어 있다. 첫 번째 단계에서는 에지 추적 기법을 이용한 다각형 인공지물의 경계 추출 알고 리듬을 통하여 영상상에서 인공 지물의 경계를 추출한다. 두 번째 단계에서는 카메라 정보를 이 용하여 인공지물의 구성하고 있는 직선성분들을 정립한다. 마지막 단계로 정합된 선분쌍을 이용 하여 실제높이를 계산하고 높이 정보를 추출한다. 실험에 사용된 영상은 실제로 취득한 영상이 아닌 합성영상을 사용하였다. 실험 결과 본 논문에 서 제안한 인공지물 경계 추출, 고도 정보 추출은 좋은 성능을 보임을 알 수 있었다.

광학 영상과 Lidar의 정보 융합에 의한 신뢰성 있는 구조물 검출 (Information Fusion of Photogrammetric Imagery and Lidar for Reliable Building Extraction)

  • 이동혁;이경무;이상욱
    • 방송공학회논문지
    • /
    • 제13권2호
    • /
    • pp.236-244
    • /
    • 2008
  • 본 논문에서는 칼라 세그멘테이션, 에지 정합, 지각적 그룹핑 등을 사용하여 Lidar 데이터와 광학 영상의 정보 융합에 의한 새로운 구조물 검출 및 복원 알고리듬을 제안한다. 제안하는 알고리듬은 두 가지 단계로 구성된다. 첫 번째로, 항공 Lidar 데이터로부터 초기 구조물 추출 결과와 영상의 칼라 세그멘테이션 결과를 사용하여 coarse building boundary를 추출한다. 두 번째로, coarse building boundary와 에지 정합 및 지각적 그룹핑에 의해 보다 정밀한 구조물 추출 결과인 precise building boundary를 추출한다. 본 논문에서 제안하는 알고리듬은 보다 신뢰성 있는 구조물 검출을 위해, 광학 영상으로부터 칼라 정보를 사용한다. 이를 통해, Lidar에 의해 획득된 붕괴된 형태의 구조물 외곽선을 보완한다. 또한, 인공지물의 특징으로서, 에지의 직선성 및 다면체 형태의 지붕모양을 반영함으로써 신뢰성 있는 구조물을 검출한다. 다중 센서 데이터에 대한 실험은 제안하는 알고리듬이 Lidar 단일 센서 결과에 비해 정밀하고 신뢰성 있는 결과를 보여준다.

A Pattern-based Query Strategy in Wireless Sensor Network

  • Ding, Yanhong;Qiu, Tie;Jiang, He;Sun, Weifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권6호
    • /
    • pp.1546-1564
    • /
    • 2012
  • Pattern-based query processing has not attracted much attention in wireless sensor network though its counterpart has been studied extensively in data stream. The methods used for data stream usually consume large memory and much energy. This conflicts with the fact that wireless sensor networks are heavily constrained by their hardware resources. In this paper, we use piece wise representation to represent sensor nodes' collected data to save sensor nodes' memory and to reduce the energy consumption for query. After getting data stream's and patterns' approximated line segments, we record each line's slope. We do similar matching on slope sequences. We compute the dynamic time warping distance between slope sequences. If the distance is less than user defined threshold, we say that the subsequence is similar to the pattern. We do experiments on STM32W108 processor to evaluate our strategy's performance compared with naive method. The results show that our strategy's matching precision is less than that of naive method, but our method's energy consumption is much better than that of naive approach. The strategy proposed in this paper can be used in wireless sensor network to process pattern-based queries.

증강현실 환경에서 복합특징 기반의 강인한 마커 검출 알고리즘 (A Robust Marker Detection Algorithm Using Hybrid Features in Augmented Reality)

  • 박규호;이행석;한규필
    • 정보처리학회논문지A
    • /
    • 제17A권4호
    • /
    • pp.189-196
    • /
    • 2010
  • 본 논문에서는 모서리점, 경계선 및 영역, 적응적 임계값 등과 같은 복합특징을 이용하여 증강현실 시스템에서 마커의 차단현상이 발생되거나 어두운 환경에서도 사용 가능하면서 정합 성능을 개선한 마커검출 알고리즘을 제안한다. 기존의 ARToolkit에서는 마커의 일부분이 사용자에 의해 가려지거나 주위 조명 변화에 의해 입력영상의 밝기 변화가 크게 될 경우, 마커를 추출할 수 없는 반면 제안한 마커추적 알고리즘에서는 마커영역 추출시 적응적 임계값 기법을 사용하여 조명의 변화에 둔감하게 반응하여 정확한 마커영역만을 분리 추출할 수 있다. 그리고 모서리 여부를 판단하고 모서리점이 가려진 경우, 추출된 직선의 교점으로부터 모서리점을 추출하므로 차단에 의해 마커가 가려졌을 때에도 정확한 마커 영역을 추출할 수 있다. 또한, 등록된 마커와의 정합시, 와핑에서 발생되는 마커의 크기 및 중심위치 변화를 보정하는 기법을 추가하여 정합 성능을 개선 시켰다. 실험 결과 제안한 알고리즘은 주위 조명 변화와 차단 현상에 강인하게 마커를 검출하였으며, 유사한 마커 태그를 구분 할 수 있는 정합 유사도가 종전보다 30% 증가한 것을 확인 할 수 있었다.

신경회로망을 이용한 물체인식 (Object Recognition using Neural Network)

  • 김형근;박승규;송철;최갑석
    • 한국통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.197-205
    • /
    • 1992
  • 본 논문은 신경회로망을 이용한 물체인식에 관한 연구로써, 인식은 물체의 경계점으로부터 추출된 국부 특징들로 구성되는 각 선형선소들간의 매칭에 의해 이루어진다. 그러나 추출된 특징들은 물체를 구성하는 선형선소들간의 유사성 때문에 특징 공간상에서 다른 모델과의 경계가 불분명하게 되므로 인식의 애매성이 발생하고, 특징의 유사성에 기인한 신경 회로망의 경계분리능력의 한계에 따라 인식률의 저하를 가져온다. 따라서, 본 논문에서는 인식의 애매성을 해소하고, 인식율의 향상을 도모할 수 있도록 2개의 신경회로망을 다단결합한 물체인식 시스템을 구성하였으며, 물체를 효과적으로 기술할 수 있는 국부 특징량을 사용하였다. 실험을 통하여 구성된 물체인식 시스템의 타당성을 확인하였으며, 중복 물체 및 변형된 물체에 적용하여 그 결과를 고찰하였다.

  • PDF

정합확률을 이용한 겹쳐진 물체의 인식에 대하여 (On the Recognition of the Occluded Objects Using Matching Probability)

  • 남기곤;이수동;이양성
    • 대한전자공학회논문지
    • /
    • 제26권1호
    • /
    • pp.20-28
    • /
    • 1989
  • 부분적으로 가려진 물체의 인식은 공장자동화를 위한 실제 문제를 해결하는 비젼 응용 분야에서 중요한 문제가 되고 있다. 본 논문에서는 부분적으로 가려진 2차원 물체의 인식 문제를 해결하는 한 기법에 대하여 서술한다. 이러한 기법은 3단계로 구성된다. 즉, 1) 경계점 추적, 2) 선형선소의 추출, 3) 정합확률에 의한 정합벡타의 결정으로 구성된다. 80개의 모델을 포함하고 있는 20개의 영상화면에서 시험해 본 결과는 평균적으로 95%의 인식율을 나타내었다.

  • PDF

중국 자동차 번호판 인식 (Recognition of Chinese Automobile License Plates)

  • 안영준;위규범;홍만표
    • 정보처리학회논문지B
    • /
    • 제14B권2호
    • /
    • pp.81-88
    • /
    • 2007
  • 도난차량 추적과 주차 관리 시스템 및 과속 차량 탐지 등에 광범위하게 사용되는 차량 번호판 인식 시스템을 구현하였다. 인식 시스템은 번호판을 추출하는 부분과 추출된 번호판을 인식하는 단계로 나뉘어진다. 번호판 추출 단계에서는 영상의 기울기를 측정하기 위해 수평 성분만을 추출하는 필터를 사용하여 차창과 번호판을 포함한 차량 전면부의 수평 성분만을 검출한 후 이것의 기울기를 측정하는 방법으로 번호판의 기울기를 구한다. 세그먼트 추출 과정에서는 신경화소 또는 배경화소가 연속하여 나타나는 블록의 계수의 변화를 감지하여 각 문자 또는 숫자를 추출한다. 각 문자 또는 숫자의 인식 단계에서는 잡음의 영향을 덜 받으며 높은 정확도를 보이는 비교템플렛 방법을 제안한다. 기존의 원형정합 방법과 히스토그램 방법과의 비교 실험을 통하여 제안한 방법의 인식 성능이 우수함을 보인다.

사영 컨투어를 이용한 전방향 카메라의 움직임 추정 방법 (Omnidirectional Camera Motion Estimation Using Projected Contours)

  • 황용호;이재만;홍현기
    • 대한전자공학회논문지SP
    • /
    • 제44권5호
    • /
    • pp.35-44
    • /
    • 2007
  • 넓은 시야각을 갖는 전방향(omnidirectional) 카메라 시스템은 적은 수의 영상으로도 주변 장면에 대해 많은 정보를 취득할 수 있는 장점으로 카메라 교정(calibration), 공간의 3차원 재구성(reconstruction) 등에 널리 응용되고 있다. 실 세계에 존재하는 직선 성분들은 전방향 카메라 모델에 의해 컨투어로 사영(projection)되기 때문에, 영상간에 대응되는 컨투어 성분은 카메라의 회전 및 이동 등의 추정에 효과적으로 활용될 수 있다. 본 논문에서는 전방향 카메라의 변환 파라미터를 추정하기 위한 2단계 최소화 알고리즘이 제안된다. 제안된 알고리즘은 컨투어를 이루는 대응점에 대한 에피폴라(epipolar) 평면과 3차원 벡터간의 각도 오차함수 및 사영된 컨투어의 거리 오차를 단계별로 최소화하는 카메라 파라미터를 계산한다. 등거리(equidistance) 사영된 합성영상과 어안렌즈(fisheye lens)로 취득한 실제 영상을 대상으로 제안된 알고리즘이 카메라의 위치 정보를 정확하게 추정함을 확인하였다.

탄성변형에너지 측도를 이용한 부분적으로 가려진 이진 객체의 인식 (Recognition of Partially Occluded Binary Objects using Elastic Deformation Energy Measure)

  • 문영인;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.63-70
    • /
    • 2014
  • 주어진 이진영상 안에 존재하는 객체를 인식하기 위해서는 영상분할과 패턴정합 과정을 거친다. 영상 내의 이진 객체들이 서로 분리되었다는 조건 하에서는 면적, 경계선의 길이, 또는 그들 사이의 비례 등과 같은 대상 전체의 특징을 기술하는 전역적 특징을 이용해서 객체를 인식할 수 있지만 객체들이 서로에 의해 부분적으로 가리어져 있으면 전역적 특징은 사용될 수 없고 점, 선분 등 객체의 부분을 기술하는 국지적 특징들을 이용해서 인식해야 한다. 본 논문에서는 모델의 경계선상의 곡률이 큰 점들을 추출하여 특징점으로 삼고, 그 가운데 두 점을 택하여 하나의 국지적 특징으로 사용한다. 또한 모델과 입력영상에서 각기 추출된 국지적 특징들을 비교하여 정합함으로써 부분적으로 가려진 객체를 인식하는 방법을 제안하고 있다. 특징점의 쌍으로 표현되는 국지적 특징을 서로 비교함에 있어서 두 점간의 거리와 양 특징점에서의 그래디언트 벡터의 사이 각을 일치시키는데 필요한 탄성변형 에너지를 이용하여 국지적 특징 사이의 유사도를 정의한다. 인식대상 객체 상의 한 특징점의 레이블을 다른 특징점의 레이블들이 얼마나 지지하는 지를 계산함으로써 부분적으로 가려진 객체를 안정적으로 인식하는 방법을 제안한다. Kimia-25 데이터에 대한 실험 결과 최대 클리크 알고리즘의 4.5배의 속도로 동일한 인식률을 얻음을 보였다.