• 제목/요약/키워드: Line of Action

검색결과 535건 처리시간 0.031초

신규 미백제 : Selina-4(14), 7(11)-dien-8-one (New Whitening Agent : Selina-4(14), 7(11)-dien-8-one)

  • 김청택;장윤희;이상화;강상진;조완구
    • 대한화장품학회지
    • /
    • 제31권1호
    • /
    • pp.17-23
    • /
    • 2005
  • 본 연구자들은 백출의 메탄올 추출물로부터 분리, 정제한 selina-4(14), 7(11)-dien-8-one (Selina)이 B16 멜라노마 세포에 대하여 매우 강력한 미백효과가 있음을 밝혀내었다. 본 연구에서는 Selina의 non-tumorigenic melanocyte cell line인 Melan-a 세포에 대한 작용 메카니즘에 대한 보고를 하고자 한다. 덧붙여 Selina를 함유하고 있는 제품의 임상효과도 연구하였다. Selina는 $10 {\mu}g/mL$의 농도에서 세포독성을 보이지 않으면서 Melan-a 세포의 멜라닌 합성을 $50\%$ 저해하였다. 또한 $10 {\mu}g/mL$의 Selina의 처리에 의하여 타이로시네이즈의 활성이 $60\%$ 감소시키지만 타이로시네이즈에 대한 직접적인 저해활성은 없는 것으로 밝혀졌다. 이러한 Selina의 작용 기작을 밝히기 위하여 연구자들은 타이로시네이즈, TRP-1, TRP-2의 3가지 유전자의 mRNA 수준과 단백질의 발현량을 RT-PCR과 western blotting을 이용하여 연구하였다. 그 결과 $10 {\mu}g/mL$의 Selina 처리에 의하여 타이로시네이즈의 mRNA와 단백질 양은 현저히 감소하였지만 TRP-1과 TRP-2의 mRNA 및 단백질 양에는 변화가 없었다. 이러한 결과는 Selina가 그 미백효과를 주로 타이로시네이즈의 발현조절에 의하여 나타낸다는 것을 알 수 있다. $0.2\%$의 Selina를 함유하는 화장품 제형을 이용, 7주간 20명의 피시험자를 대상으로 한 임상시험에서도 어떠한 부작용도 없이 통계적으로 유의한(p<0.05) 수준의 미백효과를 볼 수 있었다. 이상의 결과를 종합해 볼 때 Selina는 깨끗하고 밝은 피부를 위한 유용하면서도 안전한 신규 미백 원료임을 알 수 있다.

에탄올이 신경아세포종 B103세포의 Protein Kinase C Isozyme 활성에 미치는 영향 (Effect of Ethanol on the PKC Isozyme Activities in B103 Neuroblastoma Cells)

  • 조효정;정영진;진승하;오우균;김상원;강은정;박진규
    • 한국식품영양과학회지
    • /
    • 제33권2호
    • /
    • pp.262-270
    • /
    • 2004
  • 에탄올이 지속적으로 뇌 신경세포에 미치는 영향을 조사하기 위하여 흰쥐의 신경세포로부터 유래 된 B103 neuroblastoma cell을 사용하여 세포독성이 나타나지 않는 에탄을 농도(0, 50, 100, 200 mM)에서의 1, 2, 8, 18, 24시간 경과에 따라 유도되는 PKC $\alpha$, ${\gamma}$, $\varepsilon$, ζ isozyme들의 양을 세포질 분획과 세포막 분획으로 나누어 Western blot으로 각각 분석하였다. 100 mM의 에탄올 농도에서 분석된 PKC isozyme들 중 PKC-$\varepsilon$는 18시간대의 세포질에서 그리고 PKC-$\varepsilon$은 8∼18시간대의 세포막분획에서 각각 현저한 유도현상을 보였다 PKC-$\alpha$는 200 mM의 에탄을 첨가 후 18시간과 24시간에 세포질과 세포막 분획에서 모두 대조군의 150%까지 현저한 증가를 나타낸 반면 PKC-ζ는 100, 200 mM 에탄올농도에서 배양(18, 24시간 동안)한 세포의 세포막분획에서만 유도되었다. 그리고 50, 100, 200 mM의 에탄올 농도에서 24시간동안 배양한 세포질 분획에서 PKC-${\gamma}$는 농도 의존적으로 감소하여 200 mM의 에탄올 농도에서는 대조군의 47%까지 현저한 감소를 나타내었으며, 세포내에 세포독성을 나타내지 않는 농도 특히 100∼200mM농도범위의 에탄올을 첨가하여 24시간 동안 지속적으로 배양할 때 PKC-${\gamma}$$\varepsilon$이 관련된 신호전달체계가 억제됨을 보였다. 이는 에탄올이 PKC isozyme들의 상호간 조절을 통해 신호전달계 또는 신경전달 물질들의 변화에 영향을 줄 수 있음을 시사하며 에탄올의 중추신경계에 미치는 지속적 영향으로 나타나는 행동장애 및 뇌 기능의 손상 또는 보호과정 에 PKC-isozyme들이 관여할 수 있음을 시사한다.

Early Activation of Apoptosis and Caspase-independent Cell Death Plays an Important Role in Mediating the Cytotoxic and Genotoxic Effects of WP 631 in Ovarian Cancer Cells

  • Gajek, Arkadiusz;Denel-Bobrowska, Marta;Rogalska, Aneta;Bukowska, Barbara;Maszewski, Janusz;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8503-8512
    • /
    • 2016
  • The purpose of this study was to provide a detailed explanation of the mechanism of bisanthracycline, WP 631 in comparison to doxorubicin (DOX), a first generation anthracycline, currently the most widely used pharmaceutical in clinical oncology. Experiments were performed in SKOV-3 ovarian cancer cells which are otherwise resistant to standard drugs such as cis-platinum and adriamycin. As attention was focused on the ability of WP 631 to induce apoptosis, this was examined using a double staining method with Annexin V and propidium iodide probes, with measurement of the level of intracellular calcium ions and cytosolic cytochrome c. The western blotting technique was performed to confirm PARP cleavage. We also investigated the involvement of caspase activation and DNA degradation (comet assay and immunocytochemical detection of phosphorylated H2AX histones) in the development of apoptotic events. WP 631 demonstrated significantly higher effectiveness as a pro-apoptotic drug than DOX. This was evident in the higher levels of markers of apoptosis, such as the externalization of phosphatidylserine and the elevated level of cytochrome c. An extension of incubation time led to an increase in intracellular calcium levels after treatment with DOX. Lower changes in the calcium content were associated with the influence of WP 631. DOX led to the activation of all tested caspases, 8, 9 and 3, whereas WP 631 only induced an increase in caspase 8 activity after 24h of treatment and consequently led to the cleavage of PARP. The lack of active caspase 3 had no outcome on the single and double-stranded DNA breaks. The obtained results show that WP 631 was considerably more genotoxic towards the investigated cell line than DOX. This effect was especially visible after longer times of incubation. The above detailed studies indicate that WP 631 generates early apoptosis and cell death independent of caspase-3, detected at relatively late time points. The observed differences in the mechanisms of the action of WP631 and DOX suggest that this bisanthracycline can be an effective alternative in ovarian cancer treatment.

Clostridium difficile Toxin A Inhibits Erythropoietin Receptor-Mediated Colonocyte Focal Adhesion Through Inactivation of Janus Kinase-2

  • Nam, Seung Taek;Seok, Heon;Kim, Dae Hong;Nam, Hyo Jung;Kang, Jin Ku;Eom, Jang Hyun;Lee, Min Bum;Kim, Sung Kuk;Park, Mi Jung;Chang, Jong Soo;Ha, Eun-Mi;Shong, Ko Eun;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1629-1635
    • /
    • 2012
  • Previously, we demonstrated that the erythropoietin receptor (EpoR) is present on fibroblasts, where it regulates focal contact. Here, we assessed whether this action of EpoR is involved in the reduced cell adhesion observed in colonocytes exposed to Clostridium difficile toxin A. EpoR was present and functionally active in cells of the human colonic epithelial cell line HT29 and epithelial cells of human colon tissues. Toxin A significantly decreased activating phosphorylations of EpoR and its downstream signaling molecules JAK-2 (Janus kinase 2) and STAT5 (signal transducer and activator of transcription 5). In vitro kinase assays confirmed that toxin A inhibited JAK 2 kinase activity. Pharmacological inhibition of JAK2 (with AG490) abrogated activating phosphorylations of EpoR and also decreased focal contacts in association with inactivation of paxillin, an essential focal adhesion molecule. In addition, AG490 treatment significantly decreased expression of occludin (a tight junction molecule) and tight junction levels. Taken together, these data suggest that inhibition of JAK2 by toxin A in colonocytes causes inactivation of EpoR, thereby enhancing the inhibition of focal contact formation and loss of tight junctions known to be associated with the enzymatic activity of toxin A.

Development of screening systems for modulators on phospholipase-mediated signal transduction

  • Lee, Young-Han-;Min, Do-Sik;Kim, Jae-Ho-;Suh, Pann-Ghill;Ryu, Sung-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.186-186
    • /
    • 1994
  • Many agonists have been known to activate the hydrolysis of membrane phospholipids through the bindings with corresponding receptors on the various cells. Diacylglycerol and inositol 1,4,5-trisphosphate(IP3) generated by the action of phosphoinositide-specific phospholipase C (PI-PLC) are well known second messengers for the activation of protein kinase C and the mobilization of Ca2+ in many cells. Three types of PI-PLC isozyme (${\alpha}$,${\gamma}$, and $\delta$) and several subtrpes for each type have been identified from mammalian sources by purification of enzymes and cloning of their cDNAs. Each type PI-PLC isozyme is coupled to different receptors and mediators, for example, ${\beta}$-types are coupled to the seven-transmembrane-receptors via Gq family of G-proteins and ${\beta}$-types directly to the receptor tyrosine kinases. Specific modulators for the signaling pathway through each type of PI-PLC should be very useful as potential potential candidates for lend substances in developing novel drugs. To establish the sensitive and convenient screening systems for searching modulators on PI-PLC mediated signaling, two kinds of approaches have been tried. (1) Establishment of in vitro assay condition for each type of PI-PLC isozyme: Overexpression by using vaccinia virus and purification of each isozyme was carried out for the preparation of large amounts of enaymes. Optimum and sensitive assay condition for the measurements of PI-ELC activities were established. (2) Development of the cell lines in which each type of PI-PLC is permanently overexpressed: A fibroblast cell line (3T3${\gamma}$1-7) in which PI-PLC-${\gamma}$1 was overexpressed by using pZip-neo expression vector was developed and used for the measurement of PDGF-induced IP3 formation. The responses for IP3 formed in 3T3${\gamma}$1-7 cells by the treatment of PDGF is 8 times more sensitive than those in control cells. 3T3${\gamma}$l-7 cell is useful for the screening of the inhibitors on the PDGF-induced cellular responses from large number of samples in a small volume(50 ${\mu}$l) and short time(5-15 min). Using these systems, we screened hundreds of herb-extracts for the inhibition of PDGF-induced IP3 formation and selected several extracts that showed the inhibition as the candidates for isolation and characterization of active substances. The determination of the acting point of selected extracts or fractions in the PDGF signaling pathway has been analyzing.

  • PDF

한국형 선박통제의 발전방향에 관한 연구 (Future Development of Republic of Korea NCAGS)

  • 김성해;정효섭
    • Strategy21
    • /
    • 통권44호
    • /
    • pp.352-376
    • /
    • 2018
  • Through this research, the current state of naval coordination and guidance of shipping is reviewed whereupon which a suggestion is made for a novel role which satisfies the needs of the people and the country asked of the Navy. Taking into consideration the dynamic security environment, the developing relationship between the two nations on the Korean peninsula, and the influence that the Republic of Korea has on maritime security, it is made more urgent that the Navy takes a proactive course of action in terms of naval coordination and guidance of shipping. The current form of Korean naval coordination and guidance of shipping is adapted from the logical and flexible concepts of NCAPS and NCAGS and is one of many tasks that the Republic of Korea Navy must perform. However, when the Republic of Korea Navy develops blue-water capabilities with the ambitions of protecting its people and their way of life, naval coordination and guidance of shipping could potentially become one of the primary functions of the Republic of Korea Navy that the it must champion. Already, there are indications that foreign navies are, through many developments and commitment towards naval coordination and guidance of shipping, protecting its people and states' interests wherever is necessary. In the case of Chile, its Navy has taken the helm of naval coordination and guidance of shipping and has integrated various maritime organizations including the coast guard and the National Customs Service for the sake of maintaining regional maritime security, showing immediate force if necessary. Presently, as the Republic of Korea Navy looks to be a global naval power, it is important that a reprioritization of the Navy's mission is undertaken, all the while sustaining military readiness posture on the Northern Limit Line. It cannot be any more emphasized how crucial thorough military readiness posture is as a natural stance against the enemy. That being said, contributing towards international maritime security is consistent with the nation's standing. It is a fact that maritime security has been conceptualized and developed merely as a study within the Ministry of Maritime Affairs and Fisheries, the Republic of Korea Navy, and other governmental organizations, forces, and academia. Naval cooperation and guidance of shipping suggested by this research as a practical operational field is a concrete solution to what once was an abstract concept. To stand firm on its status as a maritime nation, the Republic of Korea must establish a Maritime Security Organization within its Navy and develop the appropriate doctrines. Attaining experts, developing doctrines, and cultivating the capability to deploy maritime forces will allow for the Republic of Korea to execute a primary role in keeping international maritime security and naval coordination and guidance of shipping. To fully achieve its latent potential necessitates the Republic of Korea Navy to expedite the introduction of naval coordination and guidance of shipping concepts and to establish the appropriate doctrines, operation plans, and organizations.

Insulin Resistance Reduces Sensitivity to Cis-Platinum and Promotes Adhesion, Migration and Invasion in HepG2 Cells

  • Li, Lin-Jing;Li, Guang-Di;Wei, Hu-Lai;Chen, Jing;Liu, Yu-Mei;Li, Fei;Xie, Bei;Wang, Bei;Li, Cai-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3123-3128
    • /
    • 2014
  • The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the stability of HepG2/IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Garcinol, an Acetyltransferase Inhibitor, Suppresses Proliferation of Breast Cancer Cell Line MCF-7 Promoted by 17β-Estradiol

  • Ye, Xia;Yuan, Lei;Zhang, Li;Zhao, Jing;Zhang, Chun-Mei;Deng, Hua-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.5001-5007
    • /
    • 2014
  • The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol ($E_2$) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-${\kappa}B$/p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl-xl. We found that on treatment with garcinol in MCF-7 cells, $E_2$-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-${\kappa}B$/ac-p65 proteins in $E_2$-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac-H4.The nuclear translocation of NF-${\kappa}B$/p65 in $E_2$-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of $E_2$ on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-${\kappa}B$/p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by $E_2$. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-${\kappa}B$ pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl.

Aspergillus phoenicis의 한 돌연변이주에 의한 cellulase의 생성 및 그 특성 (Enhanced production of cellulase by a mutant strain of aspergillus phoenicis)

  • 이영록;고상균
    • 미생물학회지
    • /
    • 제20권3호
    • /
    • pp.125-133
    • /
    • 1982
  • Mutational experiments were performed to imporve the cellulase productivity of Aspergillus phoenicis KU175, isolated from the southern part of Korea, as a high cellulase producer. By treatment ultra-violet light nad 4-NQO(4-Nitroquinoline-N-Oxide), mutation waas induced, and treatment ultra-violet light and 4-NQO (4-Nitroquinoline-N-Oxide), mutation was induced, and A.phoenicis KU175-115 was finally selected for its highest avicelase production. Avicelase production of the mutant was increased about 2 times compared with those of the wild strain. However, activities of other hydrolytic enzymes, such as amylase, protease and nuclease, of the mutant strain didn't show a marked difference compared with those of the nuclease, of the mutant strain didn't show a marked difference compared with the wild strain, except slight increase in ribonuclease activity and slight decrease in glucoamylase activity. Avicelases from the mutant strain selected were purified from wheat bran culture by successive salting out, followed by dialysis and column chromatography, and their charcteristics were compared with thosw of the wild strain. Avicelase was separated into three peaks in the mutant strain as well as in the case of wild strain. Avicelase II activity of the mutant strain was prominently higher than that of the wild strain, while avicelase I and III activities of those were equivalent. The optimal pH ranges and stability of avicelase II from the mutant strain were pH4-5 and pH3.5-6.0, respectively, as well as in the case of the wild strain. The optimal temperature and thermal stability of avicelase II from the mutant strain were $40{\sim}50^{\circ}C\;and\;20{\sim}55^{\circ}C$, respectively. These results were same as those of the wild strain. By the using of Eadie-Hofastee plot, $K_m\;and\;V_{max}$ of avicelase II from the mutant and the wild strain were calculated to be 2.29mg/ml and $4.84{\mu}g$ reducing sugar as glucose per min equally, from the line fitted to the data by the least square method. Activity of avicelase II from the mutant strain was slightly activated by $Mg^{++}\;but\;inhibited\;by\;Cu^{++}, \;Mn^{++}\;and\;Zn^{++}$, as well as in the case of the wild strain. Therefore, it was concluded that the mutant didn't induce the formation of another avicelase isozyme, or the changes in the properties of avicelase, but induce the changes in the productively of the same avicelase II by the action of regulatory gane.

  • PDF