Browse > Article
http://dx.doi.org/10.4014/jmb.1207.07063

Clostridium difficile Toxin A Inhibits Erythropoietin Receptor-Mediated Colonocyte Focal Adhesion Through Inactivation of Janus Kinase-2  

Nam, Seung Taek (Department of Life Science, College of Natural Science, Daejin University)
Seok, Heon (Department of Biomedical Science, Jungwon University)
Kim, Dae Hong (Department of Life Science, College of Natural Science, Daejin University)
Nam, Hyo Jung (Department of Life Science, College of Natural Science, Daejin University)
Kang, Jin Ku (Department of Life Science, College of Natural Science, Daejin University)
Eom, Jang Hyun (Department of Life Science, College of Natural Science, Daejin University)
Lee, Min Bum (Department of Life Science, College of Natural Science, Daejin University)
Kim, Sung Kuk (Department of Life Science, College of Natural Science, Daejin University)
Park, Mi Jung (Department of Life Science, College of Natural Science, Daejin University)
Chang, Jong Soo (Department of Life Science, College of Natural Science, Daejin University)
Ha, Eun-Mi (College of Pharmacy, Catholic University of Daegu)
Shong, Ko Eun (Department of Animal Science and Biotechnology, Chungnam National University)
Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Kim, Ho (Department of Life Science, College of Natural Science, Daejin University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1629-1635 More about this Journal
Abstract
Previously, we demonstrated that the erythropoietin receptor (EpoR) is present on fibroblasts, where it regulates focal contact. Here, we assessed whether this action of EpoR is involved in the reduced cell adhesion observed in colonocytes exposed to Clostridium difficile toxin A. EpoR was present and functionally active in cells of the human colonic epithelial cell line HT29 and epithelial cells of human colon tissues. Toxin A significantly decreased activating phosphorylations of EpoR and its downstream signaling molecules JAK-2 (Janus kinase 2) and STAT5 (signal transducer and activator of transcription 5). In vitro kinase assays confirmed that toxin A inhibited JAK 2 kinase activity. Pharmacological inhibition of JAK2 (with AG490) abrogated activating phosphorylations of EpoR and also decreased focal contacts in association with inactivation of paxillin, an essential focal adhesion molecule. In addition, AG490 treatment significantly decreased expression of occludin (a tight junction molecule) and tight junction levels. Taken together, these data suggest that inhibition of JAK2 by toxin A in colonocytes causes inactivation of EpoR, thereby enhancing the inhibition of focal contact formation and loss of tight junctions known to be associated with the enzymatic activity of toxin A.
Keywords
Clostridium difficile; toxin; gut inflammation; epithelial cell adhension; erythropoietin receptor; JAK/STAT pathways;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Xiong, H., Z. G. Zhang, X. Q. Tian, D. F. Sun, Q. C. Liang, Y. J. Zhang, et al. 2008. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 10: 287-297.
2 Yoshimura, A., A. D. D'Andrea, and H. F. Lodish. 1990. Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Proc. Natl. Acad. Sci. USA 87: 4139-4143.   DOI   ScienceOn
3 Kurdi, M. and G. W. Booz. 2007. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J. Cardiovasc. Pharmacol. 50: 126-141.   DOI   ScienceOn
4 Lacombe, C. and P. Mayeux. 1999. Erythropoietin (Epo) receptor and Epo mimetics. Adv. Nephrol. Necker Hosp. 29: 177-189.
5 Lamont, J. T. 2002. Theodore E. Woodward Award. How bacterial enterotoxins work: Insights from in vivo studies. Trans. Am. Clin. Climatol. Assoc. 113: 167-180; discussion 180-181.
6 Mazzoni, A., V. Bronte, A. Visintin, J. H. Spitzer, E. Apolloni, P. Serafini, et al. 2002. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168: 689-695.
7 Menier, C., C. Guillard, B. Cassinat, E. D. Carosella, and N. Rouas-Freiss. 2008. HLA-G turns off erythropoietin receptor signaling through JAK2 and JAK2 V617F dephosphorylation: Clinical relevance in polycythemia vera. Leukemia 22: 578-584.   DOI   ScienceOn
8 Nam, H. J., J. K. Kang, S. K. Kim, K. J. Ahn, H. Seok, S. J. Park, et al. 2011. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J. Biol. Chem. 285: 32888-32896.
9 Neumann, D., L. Wikstrom, S. S. Watowich, and H. F. Lodish. 1993. Intermediates in degradation of the erythropoietin receptor accumulate and are degraded in lysosomes. J. Biol. Chem. 268: 13639-13649.
10 Pothoulakis, C., R. J. Gilbert, C. Cladaras, I. Castagliuolo, G. Semenza, Y. Hitti, et al. 1996. Rabbit sucrase-isomaltase contains a functional intestinal receptor for Clostridium difficile toxin A. J. Clin. Invest. 98: 641-649.   DOI   ScienceOn
11 Pothoulakis, C. and J. T. Lamont. 2001. Microbes and microbial toxins: Paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178-G183.
12 Pothoulakis, C., R. Sullivan, D. A. Melnick, G. Triadafilopoulos, A. S. Gadenne, T. Meshulam, and J. T. LaMont. 1988. Clostridium difficile toxin A stimulates intracellular calcium release and chemotactic response in human granulocytes. J. Clin. Invest. 81: 1741-1745.   DOI
13 Teter, K., M. G. Jobling, D. Sentz, and R. K. Holmes. 2006. The cholera toxin A1(3) subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect. Immun. 74: 2259-2267.   DOI   ScienceOn
14 Walrafen, P., F. Verdier, Z. Kadri, S. Chretien, C. Lacombe, and P. Mayeux. 2005. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105: 600-608.   DOI   ScienceOn
15 Huang, L. J., S. N. Constantinescu, and H. F. Lodish. 2001. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol. Cell 8: 1327-1338.   DOI   ScienceOn
16 Warny, M., A. C. Keates, S. Keates, I. Castagliuolo, J. K. Zacks, S. Aboudola, et al. 2000. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105: 1147-1156.   DOI   ScienceOn
17 Di Bona, D., M. Cippitelli, C. Fionda, C. Camma, A. Licata, A. Santoni, and A. Craxi. 2006. Oxidative stress inhibits IFNalpha-induced antiviral gene expression by blocking the JAKSTAT pathway. J. Hepatol. 45: 271-279.   DOI   ScienceOn
18 Farrell, F. and A. Lee. 2004. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist 5:18-30.
19 Jang, E. H., C. S. Park, S. K. Lee, J. E. Pie, and J. H. Kang. 2007. Excessive nitric oxide attenuates leptin-mediated signal transducer and activator of transcription 3 activation. Life Sci. 80: 609-617.   DOI   ScienceOn
20 Just, I., G. Fritz, K. Aktories, M. Giry, M. R. Popoff, P. Boquet, et al. 1994. Clostridium difficile toxin B acts on the GTPbinding protein Rho. J. Biol. Chem. 269: 10706-10712.
21 Just, I., J. Selzer, C. von Eichel-Streiber, and K. Aktories. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95: 1026-1031.   DOI   ScienceOn
22 Just, I., J. Selzer, M. Wilm, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500-503.   DOI   ScienceOn
23 Kim, H., S. H. Rhee, E. Kokkotou, X. Na, T. Savidge, M. P. Moyer, et al. 2005. Clostridium difficile toxin A regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245.   DOI   ScienceOn
24 Just, I., M. Wilm, J. Selzer, G. Rex, C. von Eichel-Streiber, M. Mann, and K. Aktories. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270: 13932-13936.   DOI   ScienceOn
25 Kang, J. K., C. H. Chang, H. J. Nam, S. K. Kim, K. J. Ahn, H. Seok, et al. 2010. Downregulation of erythropoietin receptor by overexpression of phospholipase C-gamma 1 is critical for decrease on focal adhesion in transformed cells. Cell Oncol. (Dordr) 34: 11-21.
26 Kim, H., E. Kokkotou, X. Na, S. H. Rhee, M. P. Moyer, C. Pothoulakis, and J. T. Lamont. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888.   DOI   ScienceOn
27 Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. LaMont. 2009. Clostridium difficile toxin A binds colonocyte Src causing dephosphorylation of focal adhesion kinase and paxillin. Exp. Cell Res. 315: 3336-3344.   DOI   ScienceOn
28 Kim, H., S. H. Rhee, C. Pothoulakis, and J. T. Lamont. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886.   DOI   ScienceOn
29 Alscher, K. T., P. T. Phang, T. E. McDonald, and K. R. Walley. 2001. Enteral feeding decreases gut apoptosis, permeability, and lung inflammation during murine endotoxemia. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G569-G576.
30 Chang, J. S., D. Y. Noh, I. A. Park, M. J. Kim, H. Song, S. H. Ryu, and P. G. Suh. 1997. Overexpression of phospholipase Cgamma1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 57: 5465-5468.
31 Choi, H. R., W. K. Kim, E. Y. Kim, H. Jung, J. H. Kim, B. S. Han, et al. 2012. Protein tyrosine phosphatase profiling analysis of HIB-1B cells during brown adipogenesis. J. Microbiol. Biotechnol. 22: 1029-1033.   DOI   ScienceOn