• Title/Summary/Keyword: Line distortion

Search Result 499, Processing Time 0.024 seconds

Analysis and Design of a DC-Side Symmetrical Class-D ZCS Rectifier for the PFC of Lighting Applications

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon;Higuchi, Kohji
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.621-633
    • /
    • 2015
  • This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

Development of a new ball-type phantom for evaluation of the image layer of panoramic radiography

  • Yeom, Han-Gyeol;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.48 no.4
    • /
    • pp.255-259
    • /
    • 2018
  • Purpose: This study proposes a new ball-type phantom for evaluation of the image layer of panoramic radiography. Materials and Methods: The arch shape of an acrylic resin phantom was derived from average data on the lower dental arch in Korean adult males. Metal balls with a 2-mm diameter were placed along the center line of the phantom at a 4-mm mesiodistal interval. Additional metal balls were placed along the 22 arch-shaped lines that ran parallel to the center line at 2-mm buccolingual intervals. The height of each ball in the horizontal plane was spaced by 2.5 mm, and consequently, the balls appeared oblique when viewed from the side. The resulting phantom was named the Panorama phantom. The distortion rate of the balls in the acquired image was measured by automatically calculating the difference between the vertical and horizontal length using $MATLAB^{(R)}$. Image layer boundaries were obtained by applying various distortion rate thresholds. Results: Most areas containing metal balls (91.5%) were included in the image layer with a 50% distortion rate threshold. When a 5% distortion rate threshold was applied, the image layer was formed with a small buccolingual width along the arch-shaped center line. However, it was medially located in the temporomandibular joint region. Conclusion: The Panorama phantom could be used to evaluate the image layer of panoramic radiography, including all mesiodistal areas with large buccolingual width.

A New Control Scheme of the Line-Interactive UPS Using the Series Active Compensator (직렬 능동 보상기를 이용한 Line-Interactive UPS의 새로운 제어 기법)

  • Jang, Hoon;Lee, Woo-Cheol;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.405-412
    • /
    • 2003
  • This paper presents a three-phase Line-Interactive uninterruptible power supply (UPS) system with series-parallel active power-line conditioning capabilities, using synchronous reference frame (SRF) based controller, which allows an effective power factor correction, source harmonic voltage compensation, load harmonic current suppression, and output voltage regulation. The three-phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low THD (total harmonic distortion). The control algorithm using SRF method and the active power flow through the Line-interactive UPS systems are described and studied. The simulation and experimental results are depicted in this paper to show the effect of the proposed algorithm.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Development of camera caliberation technique using neural-network (신경회로망을 이용함 카메라 보정기법 개발)

  • 한성현;왕한홍;장영희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1617-1620
    • /
    • 1997
  • This paper describes the camera caliberation based-neural network with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distoriton causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed camera aclibration is illustrated by simulation and experiment.

  • PDF

A Study on Machine Vision System and Camera Modeling with Geometric Distortion (기하학적 왜곡을 고려한 카메라 모델링 및 머신비젼 시스템에 관한 연구)

  • 계중읍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.64-72
    • /
    • 1998
  • This paper a new approach to the design of machine vision technique with a camera modeling that accounts for major sources of geometric distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering , that is , the optical centers of lens design and manufacturing as well as camera assembly. It is our propose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed vision system is illustrated by simulation and experiment.

Improvement of the performance of EOC Amp in AOC method using microprocessor (마이크로프로세서를 이용한 AOC 방식에서 EOG 앰프 성능 개선)

  • 고석남;이상세;정호춘;임승관;이영석;진달복;박병림
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.218-221
    • /
    • 2000
  • The electronystagmography(ENG) means to measure and record CRP(Corneal-Retinal Potential) whenever the eyeball is moved by using a skin electrode stuck to the hi-temporal and the difference of CRP. Both the horizontal and vertical movement are known according to the position of the stuck skin electrode. In this paper, the variable time-constances to record the eyeball signal of the conventional EOG(Electro-Oculograph) Amplifier is chosen. The shorter the time-constance is, the worse the distortion of a signal is. But the unbalanced impedance of the electrode stuck on the hi-temporal is reduced. Also, the longer the time-constance is, the less the distortion of it signal is. But it is sensitive to the change of base line according to the unbalanced impedance. In order to solve these problems, an DC-Amplifier, the distortion of the eyeball signal is globally used. By solving unbalanced impedance problem of EOG amplifier, the distortion ratio of EOG amplifier is improved.

  • PDF

Plate Flattening Analysis in Line Heating Process using Bending Strains (굽힘 변형도를 이용한 선상가열 과정의 곡 펴짐 현상에 관한 연구)

  • Park, Jung-Seo;Kim, Jung;Shin, Jong-Gye;Hyun, Chung-Min;Doh, Young-Chil;Ko, Kwang-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.417-425
    • /
    • 2008
  • In the line heating process, only angular distortion whose direction is perpendicular to that of a heating path is expected. However, it is observed that a deformation is induced in the direction of the heating line. Because of this, during forming a saddle type plate we experience unfavorable deformations in the unintended direction. In this paper we discuss the unwanted distortion in the manufacturing process by analyzing intermediate plates of saddle type during fabrication. For this analysis we consider the longitudinal and transversal directions separately and use the bending strain for the analysis.