• Title/Summary/Keyword: Line arrester

Search Result 100, Processing Time 0.02 seconds

Analysis of Lightning Overvoltage on the Underground Power Cable at the Striking of Lightning Surge to the Combined Transmission Line (혼합송전선로에 뇌서지침입시 지중송전선로에서의 뇌과전압 해석)

  • Kim, Nam-Yeol;Lee, Jong-Beom;Jang, Seong-Hwan;Gang, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.502-509
    • /
    • 2002
  • In the analysis of lightning surges, transmission towers are usually simulated by ATPDraw. The modeling of transmission towers is an essential part of the traveling wave analysis of lightning surges in transmission lines. The tower model is applied to the 154kV transmission tower of which surge performance characteristics are measured Tower surge response is computed using nonuniform, single-phase line models for both transmission tower and ground wire. The overvoltage will effect to the underground transmission line. The underground cable is combined by duct and trefoil type, and the each arrester is placed on the leading-in tube and outgoing tube. This paper analyzed the effect of lightning overvoltage on the underground cable system.

A Study on Possibility of Detection of Insulators' Faults by Analyses of Radiation Noises from Insulators (애자의 소음 분석을 통한 애자 고장 탐지 가능성 연구)

  • Park, Kyu-Chil;Yoon, Jong-Rak;Lee, Jae-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.822-831
    • /
    • 2009
  • The porcelain insulators are important devices, that are used to isolate electrically and hold mechanically in the high-voltage power transmission systems. The faults of the insulators induce very serious problems to the power transmission line. In this paper, we introduce techniques for fault detections of insulators by acoustic radiation noises from them. We measured radiation noises from normal state insulators and fault state insulators. The used insulators were two different type porcelain insulators, a cut out switch, two different type line posters, and a lightning arrester. Each results was compared each other in time domain, frequency domain and filter banks' outputs. We found the possibility of detection of insulators' faults and also suggested techniques for fault detections.

Leakage Currents Flowing through Lightning Surge Arresters under Various Fault Conditions in Receiving and Distribution Power Systems (수배전계통의 여러 가지 고장조건에서 피뢰기에 흐르는 누설전류)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Kang, Sung-Man;Choi, Hwee-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.132-139
    • /
    • 2004
  • Unsymmetrical faults are classified into single line-to-ground faults, line-to-line faults, or double line-to-ground faults in receiving and distribution power systems. Many of overhead distribution-line faults are single line-to-ground faults, and lightning surge arresters are stressed by system frequency overvoltages due to unsymmetrical faults. In this work, the unsymmetrical faults in receiving and distribution systems were experimentally simulated, and the characteristics of total leakage current flowing through lightning surge arresters due to various unsymmetrical faults were investigated. As a result, a little variations of the leakage current flowing through Zinc oxide (ZnO) surge arresters in the range of $\pm$10[%] voltage regulations were observed. It could be concluded that the unsymmetrical faults have no effect on the long-term life performance of ZnO surge arresters in effective grounding systems. On the other hand, the magnitude of the leakage current flowing through ZnO surge arrester elements under single line-to-ground faults was more than 140 times as compared with that under normal operating voltages in ineffective grounding systems. But abnormal voltages caused by line-to-line faults and double line-to-ground faults have a little effect on total leakage current of ZnO surge arrester elements.

Experience and Analysis of Pole Interaction for Jeju HVDC No. 2: Practical Solution for Non-Interruptible Power Transfer (제주 HVDC No. 2의 극간 상호작용 경험과 분석: 무정전 전력 송전을 위한 실용적 해결방안)

  • Kim, Hee-Jin;Kim, Chan-Ki;Park, Chang-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.459-468
    • /
    • 2020
  • The pole interaction of the line-commutated converter high-voltage direct current (HVDC) is analyzed, and a practical solution that uses a surge arrester is proposed. Jeju HVDC No. 2 is a double-monopole HVDC link that has a rated power capacity of 2 × 200 MW and was commissioned in 2012. During normal operation, Jeju HVDC No. 2 is operated in the bipolar mode to minimize the loss caused by the dedicated metallic return. However, when one pole of the inverter valve is bypassed, a commutation failure can occur in the other pole. This phenomenon is called pole interaction in this work. This pole interaction interrupts the HVDC power transfer for almost 2 s and may affect the stability of the power system. This research proposes the installation of a surge arrester at the inverter neutral, which can be an effective and practical solution for pole interaction. The HVDC system is analyzed, and the residual voltage of the surge arrester is determined. Detailed simulation using PSCAD/EMTDC demonstrates that the proposed method eliminates the pole interaction of the bipolar-operated HVDC.

Study on insulation coordination of 154KV solidly grounded system (154KV계 직접접지시의 절연협조)

  • 신대승
    • 전기의세계
    • /
    • v.17 no.3
    • /
    • pp.57-61
    • /
    • 1968
  • Limitation to Peterson coil grounded operation of 154KV system began to develop with the growth of system as to voltage and system cost. Therefore, 154KV system is going to be grounded solidly from November this year. This study shows the insulation coordination of solidly ground system, such as the selection of a suitable lightening arrester, determination of transmission line insulation and Basic Insulation Level of station equipment.

  • PDF

A Study and Analysis on the Switching Surge Using a EMTP/ATPDraw in the Combined Distribution System (혼합배전계통에서 EMTP/APTDraw를 이용한 개폐서지 해석에 관한 연구)

  • Lee, Jang-Geun;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.175-177
    • /
    • 2005
  • This paper analyzes transient behavior due to switching overvoltage in 22.9kV combined distribution systems. Computer models are consisted of distribution overhead line model, underground cable model and surge-arrester model in this paper. The computer models are made by EMTP/ATPDraw simulation and Line constants are calculated by ATP_LCC. This paper analyzes the various parameters affecting. These factors include closing angle and cable length.

  • PDF

Insulation Design of Distribution Systems in Case of the Stroke of Direct Lightning Surge (직격뢰 침입시 배전계통 절연설계)

  • 정채균;김상국;이종범;서재호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.238-247
    • /
    • 2004
  • This paper describes the insulation coordination scheme of line in distribution system when the direct lightning surge strikes. The BIL that is applied to distribution system is not properly considered the performance and operation of arresters. Because of that, the high BIL is being used at partial system. This paper variously analyses the lightning overvoltage of line and equipment with earth of overhead grounding wire and installation types of arrester. From these result. authors examine the rationality of BIL.

New Diagnostic Technique and Device for Lightning Arresters by Analyzing the Wave Height Distribution of Leakage Currents (누설전류의 파고분포 분석에 의한 새로운 피뢰기 진단기술 및 장치)

  • 길경석;한주섭;송재영;조한구;한문섭
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.562-567
    • /
    • 2003
  • Lightning arresters are deteriorated by repetition of protective operation against overvoltages or impulse currents in environments of its use. If a deteriorated arrester is left in power lines, it can lead to an accident such as a line to ground fault even in a normal system. Therefore, it is necessary to eliminate the deteriorated arrester in advance by checking the soundness of arresters on a regular basis, and to ensure the reliability of power systems by preventing accidents. Various deterioration diagnostic techniques and devices are suggested, and most of which measure leakage current components as an indicator of arrester ageing. However, the techniques based on the magnitude of leakage current measure simply RMS or peak value of leakage current components and do not provide detailed information needed in the diagnosis. In this study, we found that the wave height distributions of the total leakage currents are remarkably changed or a new wave height are produced with the progress of arrester deterioration. To propose a new technique for the diagnosis, we designed a leakage current detection unit and an analysis program which can measure leakage current magnitudes and analyze wave height distributions. From the experimental results, we confirmed that the proposed technique by analyzing the wave height distribution can simply diagnose the mode of defects such as a partial damage and an existence of punctures in arresters as well as deterioration of arresters.

A Study on an Operation Strategy of Dual-Infeed HVDC System

  • Kim, Chan-Ki;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • This paper deals with the operation strategy of reactive power in a multi-infeed HVDC (MIHVDC) system, in which several converters are connected to the same or nearby separate AC buses. The potential problems concerning a MIHVDC system when feeding a weak AC network are as follows: the need for coordination of the recovery control, the possibility of voltage instability or low quality of the area connected to the MIHVDC system, and the risk of mutual commutation failures. These problems in MIHVDC systems are similar to those in single-infeed HVDC (SIHVDC) systems, but the differences with the phenomenon of the SIHVDC system are the interactions between converters. The main reason for the potential problems of HVDC systems (MIHVDC or SIHVDC) is voltage variation; therefore, to mitigate the voltage variations, the performances of the HVDC system should be enhanced. Consequently, to mitigate the potential problems of MIHVDC systems, several solutions are suggested in this study, including installing STATCOM and installing a line arrester on the tower. The study results will be applied to a multi-infeed HVDC system in Korea.

Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arrestors (배전피뢰기용 접지도선의 효과적인 설치기법)

  • Lee, Bok-Hui;Gang, Seong-Man;Yu, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.253-259
    • /
    • 2002
  • This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [㎸] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages.